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Abstract
Representative workloads and principled methodologies are
the foundation of performance analysis, which in turn pro-
vides the empirical grounding for much of the innovation in
systems research. However, benchmarks are hard to main-
tain, methodologies are hard to develop, and our field moves
fast. The tension between our fast-moving fields and their
need to maintain their methodological foundations is a seri-
ous challenge. This paper explores that challenge through the
lens of Java performance analysis. Lessons we draw extend
to other languages and other fields of computer science.
In this paper we: i) introduce a complete overhaul of

the DaCapo benchmark suite [7], characterizing 22 new
and/or refreshed workloads across 47 dimensions, using prin-
cipal components analysis to demonstrate their diversity,
ii) demonstrate new methodologies and how they are inte-
grated into an easy to use framework, iii) use this framework
to conduct an analysis of the state of the art in production
Java performance, and iv) motivate the need to invest in
renewed methodologies and workloads, using as an exam-
ple a review of contemporary production garbage collector
performance.

We highlight the danger of allowing methodologies to lag
innovation and respond with a suite and new methodolo-
gies that nudge forward some of our field’s methodological
foundations. We offer guidance on maintaining the empirical
rigor we need to encourage profitable research directions
and quickly identify unprofitable ones.

CCS Concepts: • Software and its engineering→ Soft-
ware performance.
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1 Introduction
Building and maintaining benchmarks is a Sisyphean task,
yet our field depends critically on them. Methodological in-
novation seems to be uncommon, yet our field is fast moving,
so demands it. These two contradictions pose an enduring
risk that we misdirect our field, abandoning promising ideas
while pursuing ideas that we should have abandoned [6].

DaCapo is a broadly-focussed benchmark suite for Java
heavily used in diverse domains within academia and indus-
try [8, 20, 27, 45]. We motivate this work with a case study
using DaCapo Chopin to explore overheads of contemporary
production garbage collectors. We find that garbage collec-
tors are consuming 15% of CPU cycles even in the most
favorable situations and that newer garbage collectors incur
even higher overheads — as high as 17× in small heaps and
63% in generous ones. What is interesting and relevant to
our paper is not these overheads, but that they’ve largely
gone unnoticed. Given the scale at which Java is deployed,
the likely impact is substantial. We suggest that this lack of
awareness is an example of collective methodological inat-
tention.

One contribution of this paper is that we highlight the im-
portance of the systems community continuously improving
and evolving our methodologies. The heart of contribution,
though, is DaCapo Chopin, a major release of the DaCapo
benchmark suite for Java [7] that took fourteen years to
develop, with eight entirely new workloads, all other work-
loads fully refreshed, a new methodology for measuring and
reporting latency, nine latency-sensitive workloads, novel in-
tegrated workload characterization, and applications target-
ing the phone and the server, with minimum heap sizes from
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(a) Lower bound wall clock time overheads.
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(b) Lower bound total CPU overheads (Linux TASK_CLOCK).

Figure 1. Lower bounds on the overheads of five OpenJDK
21 production garbage collectors with their default settings,
as a function of heap size, showing the geometric mean of
overhead over all 22 DaCapo Chopin benchmarks. We only
plot data points where the respective collector can run all
22 benchmarks to completion. In the best case, wall clock
overheads are 9 % (G1 and Parallel) and total CPU overheads
are 15 % (Serial). At smaller heaps, overheads exceed 2×.

5MB to 20GB. We offer methodological guidance, including
a description of DaCapo Chopin’s new latency metrics, and
offer insights that we glean from evaluating DaCapo Chopin
using OpenJDK 21.

We hope that the methodological guidance we offer will be
used, that it might fuel a spirit of methodological critique and
development, and that it might also inspire others to develop
diverse, open, standardized workloads and methodologies
for Java, for other languages, and in other areas.

2 Motivation
Figure 1 shows the overhead of five OpenJDK 21 garbage col-
lectors as a function of heap size, taking the geometric mean
over all 22 DaCapo Chopin benchmarks, using the lower

bound overhead (LBO)1 methodology [11].2 The graphs show
the time-space tradeoff inherent to garbage collection: CPU
resources consumed by garbage collection rise as the avail-
able memory shrinks. Figure 1(a) shows the wall clock time
overhead while Figure 1(b) uses Linux perf TASK_CLOCK,
which sums the running time of all threads in the process,
indicating the total computational overhead. All of the collec-
tors except ZGC use compressed pointers by default. Because
ZGC does not support compressed pointers, care should be
taken when comparing it with the other collectors.
First, note that the CPU overhead of garbage collection

is 15 % in the best case. Second, note that there is a regres-
sion when we consider collector designs in terms of when
they were introduced into the JVM: Serial (1998), Parallel
(2005), G1 (2009) [15], Shenandoah (2014) [17, 18, 43], and
ZGC (2018) [29, 30, 51]. Comparison with the previous anal-
ysis by Cai et al. [11] indicates that these results are robust
across JVM versions and benchmark versions. If we accept
for a moment that our analysis is sound and that these fig-
ures accurately reflect the state of the art, this should give
researchers pause.

What’s going on? The relevant context is the rise of par-
allelism and latency as foremost concerns in application
domains from mobile to the data center; parallelism because
of the ubiquity of parallel hardware, latency because of the
increasing use of garbage collection in latency-sensitive set-
tings. The evolution in collector designs reflects this. Serial
uses a single collection thread, while Parallel uses all of the
available hardware parallelism, so runs faster than Serial.
However, parallelism is never perfectly efficient, so Parallel
tends to have larger total overheadwhen considering the task
clock (Figure 1(b)). G1 performs work concurrently with the
application and works in smaller regions at a time, so offers
better latency than Parallel, and sometimes incurs a perfor-
mance overhead in doing so. Shenandoah and ZGC go a step
further and perform almost all collector work concurrently
with the application, promising to offer better latency still,
but incurring additional overhead in doing so. The problem
depicted in Figure 1 was raised in 2022 by Cai et al. [11].

How did this happen? We don’t improve what we don’t
measure. Specifically: i) Failure to expose garbage col-
lection’s time-space tradeoff. Despite the importance of
systematically exploring this most basic tradeoff having been
laid down more than twenty years ago [9, 10, 25], work rou-
tinely ignores this advice, neither systematically identifying
minimum heap sizes [9], nor varying the available mem-
ory [10, 25] when evaluating collectors.3 We respond to this
in Section 4.2. ii) Failure to appropriately evaluate la-
tency. Two decades ago, Cheng and Blelloch [13] clearly
1Pronounced elbow.
2Details of the methodology are in Section 6.1 and Section 6.2.
3We’re pointing to the broader research community (the authors included)
and its collective culture, not to individual researchers.
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explained why garbage collection pause times should never
be used as a proxy for user-experienced latency, but GC
pauses continue to be (mis)used this way. We respond to this
in Section 4.4. iii) Failure to expose total computational
overheads. Despite the ubiquity of hardware parallelism
and the importance of multi-tenanted platforms such as mo-
bile devices, browsers, and data centers, evaluations rarely
measure the total computational cost of systems, focusing
instead on wall clock time. The situation is worse still with
garbage collection, where costs can be hard to attribute [11].
We respond to this in Section 4.5. iv) Failure to evaluate
using diverse, appropriate workloads. The cost of cre-
ating and maintaining benchmarks means that often there
are not good, representative, workloads available. DaCapo
Chopin is our response.

Objections to our motivating analysis might include:

Q: Shouldn’t the latency advantages of the various collec-
tors be presented here too?

A: We investigate latency in Section 4.4 and Section 6.3.
Q: Weren’t some of these collectors designed (only) to be

used with generous heaps?
A: Our analysis extends to 6× the minimum required

memory. Given the cost of memory across mobile,
desktop and data centers, a 6× memory overhead is
generous. Consider Figure 6(d), showing h2 at 4 GB.

Q: What about an application domain that is not memory
or compute-constrained?

A: In this situation, it may be best not to garbage collect
at all [33, 49]. Otherwise, the time and space overheads
introduced by a system remain important.

Although our motivating example is concretely based on
garbage collection, it need not be. Garbage collection is an ex-
ample of a methodologically challenging subject. Our point
here is not to paint a negative picture of production garbage
collectors, but to cast a light on overheads that have gone
largely unnoticed yet affect production systems. We don’t at-
tribute this to the designers and engineers, but to our broader
research community and our methodological inattention.

Our hope is that the new workloads, new methodologies,
and new tooling we provide will nudge the field forward
again, making it easier for researchers to better measure,
analyze, and understand the likely impact of their work.

3 Background and Related Work
3.1 Modern Virtual Machines and OpenJDK 21
Modern language virtual machines are large and complex.
According to estimates published by SynopsysOpenHub [46],
the OpenJDK runtime includes 12M lines of code, took 3193
person years to develop, and cost approximately $215M
to build. The complexity of these runtimes and their wide

use compounds the methodological challenges of measuring
them well while raising the stakes of not doing so.

We focus our attention on OpenJDK 21 and the compilers
and collectors that ship with it. OpenJDK 21 was released in
September 2023, a recent stable release of the most widely
used runtime for Java [38], grounding our analysis in a state
of the art production environment. It is not our goal to create
benchmarks or methodologies for other languages, although
some of our findings apply broadly to garbage-collected lan-
guages, and others to performance analysis more broadly.
Nor is it our goal to evaluate other Java runtimes or garbage
collectors, although the work we present should be directly
applicable to them.

OpenJDK 21 was built over more than two decades, with
a sophisticated multi-tier compiler [39] and a suite of highly-
tuned production garbage collectors [15, 18, 24, 30]. The
system is constantly under development, with contributions
from the research community and industry. This analysis
is not a commentary on developers of OpenJDK 21 but a
critique of the broader community from which it emerged,
and particularly our research community, which includes
the authors.

3.2 Benchmarks and Benchmark Suites
The history of using benchmarks to evaluate systems perfor-
mance dates at least to the early 1970’s, when Curnow and
Wichmann [14] discuss the use of a “clearly defined task” to
compare the speed of various CPUs in their paper describing
the Whetstone FORTRAN benchmark. They note that

unless such a program is carefully constructed it
is unlikely to be typical of the many thousands of
programs run at an installation.

This observation cuts to heart of the problems outlined in
Section 2. Ensuring benchmarks are representative makes
them expensive to create and maintain, yet an absence of
representative benchmarks is typically the justification re-
searchers give for their use of ad hoc workloads and all the
methodological problems that follow.

Benchmarks such asWhetstone andmore recent examples
such as gcbench [16], tests for Java Concurrency JSR166 [28],
and the computer language benchmark game [3] are exam-
ples of micro benchmarks. These are easy to use, easy to mea-
sure, but far from realistic. They are nonetheless valuable
tools. Simple, deterministic workloads can be particularly
helpful in identifying and attributing specific performance
regressions with high fidelity.

The DaCapo benchmark suite [7] was developed nineteen
years ago to provide a realistic setting for JVM development
and performance analysis. It was the result of a broad col-
laboration among industrial and academic researchers. The
first-order design goals were diverse real-world applications,
and ease of use. These led to the following criteria: i) open
source workloads, ii) maximizing coverage of application
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domains and behaviors, iii) easy to measure self-contained
workloads, iv) exclusion of GUI workloads, and v) provision
of a range of inputs. The authors also outlined a series of
methodological recommendations, with a particular focus
on JIT compilation and garbage collection, which differen-
tiated Java performance analysis from that of C and FOR-
TRAN which had dominated the decades prior to DaCapo’s
release [8].
The Renaissance suite [41] was developed to fill an ab-

sence of Java workloads that adequately exercised Java’s
newer parallel programming abstractions and concurrency
primitives. The authors built a rich suite of programs fol-
lowing similar principles to DaCapo and used the suite to
evaluate the Graal compiler [50] against the HotSpot C2
compiler [39], evaluating four new compiler optimizations
and a number of other existing optimizations. In addition
to Renaissance, there are other broadly-focussed suites de-
veloped with similar principles to DaCapo [42], but none
target Java. There are many other suites with more narrow
objectives, such as JaConTeBe which targets concurrency
bugs [31].

SPECjvm and SPECjbb are produced by SPEC, a non-profit
corporation guided by a desire to provide industry-standard
benchmarks with which products can be fairly compared.
SPECjvm was last released in 2008 and is not widely used
by researchers. SPECjbb2015 [44] is a synthetic benchmark
that executes requests over a simple model of a business, re-
porting both throughput and latency statistics. The business
model can be scaled, generating large workloads. The bench-
mark measures jOPS (operations), and reports a critical-jOPS
metric which is the geometric mean of the number of jOPS
across different service-level agreements (SLAs) where the
99th percentile latency meets the respective SLA.
We present the new DaCapo Chopin benchmark suite.

It differs from the prior work in significant ways: i) it is
comprised entirely of real world workloads, ii) it includes
workloads with application domains all the way from mobile
to server, iii) it introduces a novel integrated latency mea-
sure and nine latency-sensitive workloads which report rich
latency statistics, iv) its workloads have minimum heap sizes
ranging from 5MB to 20GB, v) it includes 47 per-benchmark
statistics characterizing and ranking the workloads, includ-
ing nominal minimal heap sizes and various performance
metrics, to help researchers understand workload behavior
and to facilitate sound methodology, and vi) it introduces
eight completely new workloads and updates all others. All
benchmarks run on OpenJDK 21. We rely on community
input to gain assurance of the representativeness of the suite.
The composition of DaCapo Chopin was heavily guided by
feedback from industry, withmore than half of the workloads
proposed by and/or co-developed with industrial users.

3.3 Empirical Evaluation
There is a large body of work on empirical evaluation [5, 6, 8,
21, 23, 48]. The SIGPLAN Empirical Evaluation Checklist [5]
provides seven checklist items and 22 counter-examples de-
signed to guide researchers to conduct sound evaluations.
It presents both principles (seven checklist items) and con-
creteness (via counterexamples). The principles include that
a paper’s claims must be explicit and supported by their
evaluation, and that there must be an appropriate and clear
experimental design. A group of SIGPLAN researchers devel-
oped a pragmatic guide to assessing empirical evaluations,
which includes extensive guidance and references [6]. Their
opening sentence resonates with our goals:

An unsound claim can misdirect a field, encourag-
ing the pursuit of unworthy ideas and the aban-
donment of promising ideas.

The original DaCapo release came with methodological rec-
ommendations, including how to control for JIT compiler
warmup and how to evaluate the time-space tradeoff of
garbage collectors [7, 8]. We build on that work in Section 4.

There are numerous papers on how to improve fidelity in
empirical evaluations of managed languages. Huang et al.
[22] developed a methodology for replaying dynamic opti-
mization plans to reduce measurement noise. Georges et al.
[19] proposed refinements to this approach and made recom-
mendations on how many measures should be taken in any
given experiment. Cai et al. [11] describe the lower bound
overhead (LBO) methodology evaluating garbage collector
overheads. We use LBO throughout this paper and discuss it
further in Section 4.5. Mytkowicz et al. [37] highlight alarm-
ing pitfalls for those conducting empirical evaluations. Pa-
padakis et al. [40] conducted a broad study of the memory
sensitivity of a range of Java benchmarks. We include some
similar metrics here, but our goal is a broader characteri-
zation of workloads and we focus on the new OpenJDK 21
and DaCapo Chopin. Carpen-Amarie et al. [12] use cache
coloring to artificially restrict the size of the last level cache
in order to study the sensitivity of concurrent garbage col-
lectors to last level cache size. We apply the same technique
in our workload characterization (Section 5.1). Others such
as Barrett et al. [4] have focussed on how to understand
minute changes in performance, techniques which can be
invaluable when attempting to identify and attribute small
performance regressions. Our focus is in evaluating large
production runtimes such as OpenJDK 21 in the face of large
multi-threaded workloads with complex time-varying inputs
that often exhibit complex behaviors.

4 Methodology
We made the case at the start of this paper that upholding
soundmethodological principles is important to the health of
the field, and we summarized some of the wealth of resources
available to researchers [4–6, 8, 11, 12, 19, 21, 23, 37, 40, 48].
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Here we focus on: i) aspects of existing empirical evaluation
advice that we think need renewed attention, and ii) new
methodological features that DaCapo Chopin makes avail-
able. We believe that together, the following offers a strong
response to each of the four major points of methodological
failure that we outlined in Section 2.

4.1 Methodological Principles
While concrete recommendations are often most helpful,
their concreteness means that their utility has a limited life-
time. We therefore start with some principles what provide
a higher level framework from within which researchers can
view methodology for empirical evaluation.

Researchers should follow established methodology
right up to the very point where their evaluation moves be-
yond what the state of the art can support. Then they must
identify new methodologies that correctly measure the
subject of their evaluation. The SIGPLAN empirical evalu-
ation checklist captures this by noting that the checklist is
meant to support informed judgement, not supplant it [5].
Doing this well is hard. It requires the integrity to earnestly
want to reveal the empirical truth, in the full knowledge that
the results may not support an idea that has been years in de-
velopment. It requires a high degree of rigor, because atten-
tion to detail is essential when evaluating complex systems
in complex environments. Finally, it requires discernment,
since one must be able to discern when existing methodolo-
gies are adequate (and should be rigorously adhered to), and
when new methodologies must be developed.

4.2 The Time–Space Tradeoff
Figure 1 clearly illustrates the time–space tradeoff underpin-
ning garbage collection, something all evaluations of garbage
collected languages should either explore or control for. Al-
though this has been widely understood for two decades or
more, it remains commonplace for this aspect of managed
language performance evaluation to be ignored.

Recommendation H1. Garbage collectors should be evalu-
ated across a range of heap sizes to demonstrate the sensi-
tivity of the collector to the time–space tradeoff [8].

We use a generous 6× upper bound in Figure 1 but a smaller
upper bound might be more reasonable in many circum-
stances. Because the time-space tradeoff is not linear (see
Figure 1), larger heap sizes yield smaller and smaller amounts
of information. We therefore suggest selecting heap sizes in
a distribution that gives more resolution to small heap sizes.
Because the heap size requirements of different benchmarks
vary greatly,4 it is essential that the heap sizes used in an

4For example, the minimum heap sizes range from 5MB (avrora) to 681MB
(h2) in the default benchmark sizes settings, and up to 20GB in the vlarge
setting (h2).

evaluation are chosen on a benchmark-by-benchmark basis,
rather than applying the same heap sizes to all benchmarks.

Recommendation H2. Heap sizes should be expressed in
terms of multiples of the minimum heap size in which a
baseline collector can run that workload [8, 9].

To assist with this, DaCapo Chopin includes nominal statis-
tics5 which capture minimum heap sizes for its small, default,
large and vlarge benchmark configurations with compressed
pointers, as well as for the default configuration when com-
pressed pointers are disabled. These all use the baseline Open-
JDK 21 configuration we describe in Section 6.1.

Note that methodologies like this which control the mem-
ory available to the garbage collector (e.g. via -Xmx) do not
necessarily provide a clear measure of how efficiently a col-
lector reclaims space. This is because the minimum heap
size in which a workload can run reflects the workload’s
peak memory usage, not its average usage. A metric which
reflected the ‘area under the memory use curve’ might better
reflect the net memory footprint of a workload.

4.3 Compilers, Warmup and Performance Analysis
Aside from the challenges that garbage collection brings
to measuring a runtime, the just-in-time compiler and the
broader experimental environment can create confounding
effects. Mytkowicz et al. explain how small details such as
the length of strings in environment variables can confound
findings, advice researchers should heed [37].

While some researchers (implicitly) take the position that
more iterations and more invocations are better, we make
two contrary points: i) resources are finite and there is an op-
portunity cost associated with running more executions—it
is quite possible that an experiment that tests more features
is empirically stronger than one that yields very high pre-
cision on fewer dimensions, and ii) contrived experimental
environments run a risk of irrelevance by compromising
realism.

Recommendation P1. Researchers should be cautious of
naïvely following methodological prescriptions. Instead they
should be guided by: i) the coherence of their experimental
design with respect to the claims they plan to make (which,
for example, may determine whether to time the first itera-
tion capturing JIT overheads, class loading, etc., or one that
is well warmed up), and ii) the statistical significance of their
findings (ensuring that there are sufficient data points such
that a statistically sound conclusion can be drawn).

5We use the term ‘nominal’ in the sense of ‘being, or relating to a designated
or theoretical size that may vary from the actual’ [32]. We use the word to
emphasize that these measures are only intended to provide broad char-
acterizations of the workloads in some default context and should not be
viewed as a concrete, definitive measures defining the workload.
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Figure 2. Cheng and Blelloch [13] used a figure like this to
illustrate the problem with using GC pauses as a measure of
responsiveness and proposed the minimum mutator utiliza-
tion (MMU) metric as a response. GC pause time continues
to be widely (mis)used as a proxy for responsiveness more
than twenty years later.

The DaCapo Chopin suite comes with detailed measures of
warmup time for each workload. In practice we found that
the fifth iteration (-n 5) for default workload sizes and the
first iteration for large and vlarge sizes exhibit well-warmed
up behavior for our baseline configuration of OpenJDK 21.

4.4 User-Experienced Latency
Latency-sensitive applications are an increasingly important
consideration for developers of managed languages, since
garbage collectors and JIT compilers are capable of generat-
ing latency that is visible to application users. This applies
to mobile devices, where refresh rates and smooth scrolling
affect the user experience, to the desktop where browser
responsiveness is important, and in request-based services
that run on servers. DaCapo Chopin includes nine latency-
sensitive workloads. These include jme, which is based on
the jMonkey Engine, a popular video game engine, spring,
which is a microservices workload built on the Spring web
framework, and seven other request-based services.

A naïve approach to measuring latency is to simply mea-
sure the length of pauses created by the runtime that lock out
the application (stop the world pauses). However, as Cheng
and Blelloch [13] pointed out, this is a poor measure since
several short pauses may have a similar or worse effect than
a long pause (Figure 2). They proposed the notion of mini-
mum mutator utilization (MMU) metric to reflect how much
CPU was available to the mutator over a sliding window of
time, for various window sizes. Despite this clear insight and
guidance two decades ago, it remains common for GC pauses
to be used as a proxy for user-experienced latency. Even so,
MMU is not ideal since it is a single-threaded measure, can-
not capture throughput reductions due to expensive barriers
embedded within the mutator, and requires instrumenting
the garbage collector. Zhao et al. [52] show that reliance on
simple GC pause times has led to designs with surprisingly
poor latency responsiveness even in modern collectors that
specifically target latency. DaCapo Chopin addresses the
problem by directly reporting user-experienced latency.

Simple Latency. DaCapo times every event: frame ren-
ders for jme and client requests for the other eight latency-
sensitive workloads. As the workload progresses, DaCapo
stores event start and end times in an array. Careful engineer-
ing ensures that the cost of recording these measurements is

low. Once the workload completes, DaCapo determines the
distribution of latencies, reporting the distribution in terms
of percentiles, from median to 99.99, as well as optionally
saving the complete data to file for offline analysis. We call
this metric Simple Latency.

Request Queuing and Metered Latency. Most real-world
request-based services implement a queuing system. Re-
quests enter the queuing system at some externally deter-
mined rate, dictated by factors such as when customers make
purchases or when people launch queries. These systems
typically adjust server capacity as demand changes. One of
the DaCapo design principles is that each benchmark will
run in a single JVM on a single machine. Thus, attempting
to implement a realistic distributed load balancing system
was out of scope for DaCapo Chopin. Sacrificing some real-
ism for determinism, the DaCapo request-based workloads
are driven by a pre-determined set of requests, with each
worker consuming consecutive requests until all have been
completed. Within each thread, the start time of each request
is thus dictated by the completion of the request before.

In a real system, request/event start times are externally de-
fined, so a delay will affect not only all running events, but all
subsequent events that are forced to wait in the queue due to
the backlog of work. Without a queue, DaCapo’s workloads
cannot directly model the cascading effect of delays.
Instead, we model a similar effect with what we call Me-

tered Latency. At the completion of the workload, we assign
each event an assumed start time based on all events having
been hypothetically received at uniform intervals throughout
the execution of the benchmark. We then determine the me-
tered latency for each event as the time between its end time
and the earlier of its actual and assumed start times. Thus,
when the application is paused, the effect of the pause is not
felt just by those events that were running when the pause
occurred, but also by those whose end time was delayed.

We implement the uniform synthetic start times by apply-
ing a smoothing function to the actual start times, using a
sliding average. A window size of one affords no smoothing,
so is identical to simple latency, reflecting no queueing ef-
fect. On the other hand, an arbitrarily large window gives all
events uniformly distributed synthetic start times. DaCapo
reports metered latency using window sizes from 1ms up to
the length of the benchmark execution, in powers of ten. We
suggest that a smoothing window of 100ms is a reasonable
middle ground, allowing for variation in request completion
rate over the whole execution (e.g. due to compiler or file
cache warm up), while exposing effects of disruptions due
garbage collection etc.

Recommendation L1. Researchers should report user-exper-
ienced latency, not weak proxies such as GC pauses.

Recommendation L2. Researchers should report distribu-
tion statistics and/or plot CDFs as illustrated in Figure 3,
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(a) Simple latency at 2× heap (256MB).
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(b) Simple latency at 6× heap (768MB).
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(c) Metered latency, 100ms smoothing at 2× heap (256MB).
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(d)Metered latency, 100ms smoothing at 6× heap (768MB).
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(e) Metered latency, full smoothing at 2× heap (256MB).
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(f) Metered latency, full smoothing at 6× heap (768MB)

Figure 3. DaCapo Chopin records the time for each event for its latency-sensitive workloads, avoiding the need for users
to resort to using misleading proxies such as GC pause times. These figures plot the distribution of request latencies for
cassandra for each of OpenJDK 21’s five production collectors, with the 95th percentile indicated by the shaded area. Even at
the generous 6.0× heap, the newer collectors do not deliver better latency than G1 on this workload.

rather than reporting singular latency metrics.

The inclusion of a realistic and diverse set of latency-sensitive
workloads based on modern widely-used frameworks such
as Spring, Cassandra, Kafka, Lucene, Tomcat, and Wildfly,
and built-in latency metrics allow the community to easily
and systematically measure user-experienced latency.

4.5 Lower Bound Garbage Collection Overheads
Understanding the real cost of garbage collection is a long-
standing problem. The root of the problem is that garbage
collection costs (and benefits) can be hard to measure. The

difficulty of attribution is due to some costs being finely
woven into the fabric of the application, such as the cost of
the allocator or the cost of read and write barriers, while
other costs are indirect, such as the locality effects of various
allocation strategies or copying orders.

Cai et al. [11] exploit two simple observations to develop
an easy-to-use and transparent measure of GC overheads:
1. If a perfect zero-cost GC existed, it could be used as the
baseline with which to measure the overhead of concrete
collectors. The overhead of a collector would simply be the
difference between a benchmark run using that collector and
the benchmark using the ideal collector. 2. Although the ideal
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collector by definition does not exist, it can be approximated
by running with a real garbage collector and subtracting
costs easily attributable to the GC from the total costs.

The methodology thus requires taking measurements us-
ing multiple collectors, subtracting the costs attributable to
the GC in each case. The system with the lowest net cost is
the best approximation to ideal, and thus forms the baseline.
The difference between the total cost for a concrete system
and the baseline is thus an approximation to its overhead.
Since the baseline is always an overestimate of the ideal, this
overhead measure is always an underestimate of the over-
head, and is thus a lower bound on overhead. This methodol-
ogy is transparent and simple to implement, yielding a clear
insight into the real overheads of garbage collection.

Recommendation O1. Researchers should report GC over-
heads when evaluating garbage collectors, using a method-
ology such as LBO [11], as illustrated in Figure 1.

Recommendation O2. Researchers should report both wall
clock and total CPU overheads.6

5 DaCapo Chopin Benchmarks
The DaCapo Chopin suite replaces DaCapo Bach, adding
eight new benchmarks and removing one. The composition
of the suite, the retirement of old benchmarks and the addi-
tion of new ones is driven by community engagement, with
the goal of keeping the suite relevant, diverse, and represen-
tative. Section 5.2 explains howwe use principal components
analysis (PCA) to quantify the diversity of the benchmarks
we include.

5.1 Nominal Statistics
DaCapoChopin comeswith a large and diverse set of precom-
puted analyses and statistics, including bytecode execution
and allocation size statistics as well as various performance
metrics, such as onesmeasuring sensitivity to heap and cache
size.7 The statistics are included as part of the suite because
they are methodologically and computationally non-trivial
to calculate, yet provide considerable insight into how each
of the benchmarks behave and why they behave that way.
DaCapo’s nominal statistics5 are derived from these pre-

computed metrics and are available, with brief descriptions,
at the command line (-p). Their purpose is to provide bench-
mark users with a rich qualitative characterization of each
workload with respect to a fixed hardware and software
setting. Each benchmark is scored out of ten against each
metric. The score is a simple linear mapping of the bench-
mark’s rank among all benchmarks. 1 indicates the lowest

6Note that naïvely counting cycles on a heterogenous platform unsound.
7From DaCapo Chopin MR1 onward, these statistics are available within
the stats folder, e.g.: dacapo-23.11-MR1-chopin/stats.

ranked, while 10 indicates the highest ranked. We character-
ize each benchmark in the DaCapo Chopin suite across at
least 35 dimensions8.

The inclusion of suchmetrics in a benchmark suite is novel
as far as we know. We believe that they will help improve
methodology (for example, nominal minimum heap sizes are
among the statistics), and help researchers readily reason
about behaviors they observe (such as why a compiler opti-
mization appears to be less effective on some benchmarks).

The original DaCapo paper made the choice to only char-
acterize statistics using JVM-neutral measures, such as total
bytes allocated and total objects allocated [7]. We found
that approach overly constraining as it precluded using met-
rics such as architectural sensitivity, which require measure-
ments on a real JVM. Instead we chose to use OpenJDK 21
with its most basic configurations (such as the default G1
garbage collector), and describe the measures we made as
nominal. This is to make clear that we were not attempting
to evaluate the benchmarks or the JVM but to character-
ize the benchmarks within the suite in meaningful ways
that would help users of the suite better understand the
benchmarks and their sensitivity to various aspects of the
execution environment. Our metrics include measures such
as sensitivity to last level cache size, sensitivity to compiler
configuration, sensitivity to heap size, etc. The focus of the
nominal statistics is the rank among the benchmarks. We
gather the statistics using a variety of techniques including
time-consuming bytecode instrumentation and (separate)
performance measurements. The bytecode instrumentation
tools are included as part of the suite, allowing others to
reproduce our measurements.

We give each nominal statistic a three-letter acronym and
assign each benchmark a rank and a score from 1 to 10 on
every metric, according to its sensitivity. For example, the
lusearch workload has a nominal allocation rate (ARA) of
23556MB/sec based on its total allocation and execution
time. This places it first in the suite, yielding a score of 10.
On the other hand, its sensitivity to aggressive (-comp) C2
compilation (PCC), is close to average, yielding a score of
4. These scores hold no meaning beyond allowing users to
assess the relative sensitivities of the workloads.

We cluster the statistics into five groups, indicated by the
first letter in the metric’s acronym. The first four allocation
metrics (AOA, AOL, AOM& AOS) are based on data gathered
via bytecode-instrumented executions of the benchmarks,
and the fifth (ARA) combines a measure of bytes allocated
with a separately measured, uninstrumented time for bench-
mark execution. The seven bytecode metrics (BAL, BAS, BEF,
BGF, BPF, BUB& BUF) are also gathered via bytecode instru-
mentation. Four of these (BAL, BAS, BGF & BPF) combine

8Most benchmarks have 47 dimensions, but not every dimension is available
or relevant to each benchmark. tradebeans and tradesoap have the fewest,
at 35, while h2 has the most at 47.
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Figure 4. Principal components analysis of the 22 DaCapo
workloads with respect to the 33 nominal statistics which
had non-null results for all benchmarks.

bytecode counts with uninstrumented execution time to pro-
duce a rate. The twelve garbage collection metrics (GCA,
GCC, GCM, GCP, GLK, GMD, GML, GMS, GMU, GMV,
GSS, & GTO) use telemetry from the runtime’s garbage col-
lector. The eleven performance metrics (PCC, PCS, PET, PFS,
PIN, PKP, PLS, PMS, PPE, PSD, & PWU) measure the exe-
cution time of the benchmark under various hardware and
software configurations. Eleven of the microarchitectural
metrics (UBM, UBR, UBS, UDC, UDT, UIP, ULL, USC, &
USF) use hardware performance counters to measure per-
formance characteristics, while the remaining two, UAI and
UAA, measure the sensitivity of the benchmarks to running
on entirely different processor designs (Intel and ARM).

5.2 Principal Component Analysis
We use the nominal statistics for each benchmark to con-
duct a principal component analysis of the workloads in the
suite. In the analysis we use the 33 nominal metrics where
all benchmarks have data points. We use raw values rather
than scores, and apply standard scaling (linear scaling with 0
mean and unit variance). Figure 4 shows scatter plots of the
twenty two workloads with respect to the top four principal
components, with PC1 being the most determinative compo-
nent (18 %) and PC4 being the least (11 %). Together, these
four principal components account for over 50 % of the vari-
ance between benchmarks. Intuitively, the further apart the
workloads are in the scatter graph, the greater the difference
between them with respect to the nominal statistics. When
designing a suite, diversity is important for coverage, and
to avoid implicit duplication and thus over-emphasizing cer-
tain features. Figure 4 shows that the workloads that make
up the DaCapo Chopin suite are well distributed, exhibiting
substantial variation.

6 Analysis
We now use the new DaCapo Chopin and the methodologies
we have discussed in the previous sections to conduct a
detailed analysis of the workloads. The detailed results and
statistics that underpin the following analysis are available
within the benchmark suite7 and as an appendix to this paper.
In this section we will explain the methodology we’ve used
throughout our analysis and highlight key results.

6.1 Methodology
The large number of dimensions available to our analysis
prevents us from exploring the cross product of all variations
across each dimension. Instead we identify a single baseline
and explore variations with respect to it. We chose as our
baseline the default configuration of the most recently ship-
ping OpenJDK release, running on a recent x86 processor.

6.1.1 Benchmark Suite. We use version 23.11-chopin-
MR2 of the DaCapo benchmark suite [2, 7], the most recent
release of the suite at the time of writing.

6.1.2 JVM, Compilers and Garbage Collectors. We use
the OpenJDK 21 runtime 2024-07-16 LTS shipped as the
Temurin-21.0.4+7 distribution. Unless otherwise stated: for
compatibility and consistency when evaluating across multi-
ple OpenJDK versions, we used -server to select the runtime’s
compiler behavior; we ran 5 iterations of each benchmark,
timing the last; and we used a 2× the benchmark’s GMD
nominal statistic, which is the minimum heap size in which
that application will run 5 iterations with the default collec-
tor and the -server flag. When controlling for heap size, we
used the -Xms and -Xmx flags. We run 10 invocations of each
benchmark and show or plot the 95% confidence intervals.
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In practice, 10 invocations is sufficient to produce results
with sufficiently tight confidence intervals.

6.1.3 Hardware andOperating System. Our default hard-
ware configuration is an AMD Ryzen 9 7950X Zen4 with 16
cores and 32 hardware threads, a 4.5 GHz base clock (with
frequency scaling turned off), and 64MB of last level cache.
The system has 2 × 32GB of DDR5-4800 with the standard
JEDEC 40-39-39-77 timing profile.
We used the Ubuntu 22.04.4 distribution with the Linux

6.8.0-40 kernel, with the scaling governor set to performance.
We turned off NMI watchdog to fully use all 6 performance
monitor counters on the CPU. The system firmware is AMD
AGESA 1.1.0.0.

When testing benchmarks’ sensitivity to memory speed,
we configure the memory to the equivalent of DDR5-2000 32-
32-32-64. When testing benchmarks’ sensitivity to frequency
scaling, we enable Core Performance Boost. When testing
benchmarks’ sensitivity to LLC size, we use AMD’s PQOS
L3 Cache Alloction Enforcement through Linux’s resctrl
interface.

6.2 Lower Bound Overheads
We now use the lower bound overhead (LBO) methodology
introduced by Cai et al. [11]. The key to LBO is that it ex-
poses the total overheads of a garbage collector relative to
a conservative approximation to the ideal. LBO is method-
ologically straightforward, yet captures difficult-to-attribute
overheads which had previously gone largely unmeasured.
We discussed the geometric mean of LBO results in Section 2,
and per-benchmark LBO results are included in the appendix.
Here we analyze cassandra and lusearch as examples.

LBO Methodology. The key idea is to ‘distill’ a baseline
that conservatively approximates the ideal GC. The distilled
baseline is then used as the denominator in the LBO graphs,
while the measured system forms the numerator [11]. We
use Java’s JVMTI interface to capture the easily-attributable
stop-the-world periods of the collectors. The remainder is
an approximation to the application costs. We then find
the lowest approximated application cost from among all
collectors and all heap sizes, and use that as the distilled
cost, our denominator. Note that the simpler the collector,
the more likely it is that the stop-the-world period captures
most of the collector’s cost. The simplest of the OpenJDK 21
collectors are Serial and Parallel, but even these have write
barriers embedded within the application. So our distilled
cost is clearly short of the ideal, and as a consequence the
LBO overheads are systematically conservative estimates.
We use all of the garbage collectors that ship with Open-

JDK 21 in our analysis. We evaluate themwith respect to wall
clock and task clock, at heap sizes from 1–6× the minimum
heap size. The task clock captures total CPU use, across all
threads. We plot each curve and indicate 95% confidence
intervals with shading.

174 348 522 696 870 1044
Heap size (MB)

1 2 3 4 5 6
Heap size (× minheap)

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 t
im

e 
ov

er
he

ad
 (L

B
O

)

Serial

Parallel

G1

Shen.

ZGC*

(a) Wall clock overheads for cassandra.
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(c) Wall clock overheads for lusearch.
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Figure 5. LBO overheads for cassandra and lusearch.
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LBO Analysis. Figure 5(a) and Figure 5(b) show overheads
for cassandra. The wall clock and task clock results are strik-
ingly different. Above 4× the minimum heap size, all col-
lectors have modest wall clock overheads, and right down
to a modest 2× heap, Shenandoah’s overhead remains be-
low 20%, while G1 and Parallel remain below about 10%.
However, the task clock tells a different story. G1 has a 60 %
overhead even at a moderate 3× heap, while other collectors
have overheads greater than a factor of two. This is most
likely due to the collectors successfully making use of unused
cores, since cassandra itself is not fully utilizing the available
hardware. Although in the case of our experimental setup,
the cores not being used by cassandra were free, in general
there is an opportunity cost associated with using computa-
tional resources like this. This highlights the importance of
taking both wall clock and task clock measures.
Figure 5(c) and Figure 5(d) show the overheads for luse-

arch. Wall clock overheads for Shenandoah are very high,
greater than the 2.0× 𝑦-axis limit for all values of 𝑥 . How-
ever, task clock overheads are significantly lower. This is
counter intuitive since Shenandoah is a concurrent collector.
However, note that lusearch has a very high allocation rate
(ARA). Collectors like Shenandoah throttle the application in
cases where the collector can’t free memory fast enough to
satisfy the application’s demand. In this case, Shenandoah is
throttling lusearch’s 32 rapidly allocating client threads. This
has the effect of much worse wall clock time (Figure 5(c)),
and the side effect that the application can run efficiently
due to less synchronization and contention (Figure 5(d)).

6.3 User-Experienced Latency
In Section 4.4 we described how DaCapo Chopin directly
measures user-experienced latency, and discussed simple
and metered latency for cassandra.

Figure 6 shows user-experienced latency for the h2 work-
load. The graphs are remarkably consistent. Above the 99.9th
percentile the graphs are almost identical, with plateaus that
reflect pauses in the range of 10–200ms. The effect of the
larger heap size is for most collectors to push the curves
to the right. These graphs raise four questions: 1. Why are
metered and simple latency almost identical at 2×? 2. Why
do the latency-sensitive collectors (Shenandoah, ZGC and
GenZGC) perform worse than Parallel and G1 in all cases,
and worse than Serial in the 2× heap? 3. Why do all collec-
tors have slightly worse tail latency when the heap is larger?
4. Why does Shenandoah’s metered latency get worse at the
larger heap size?

Answering these questions requires more understanding
of the h2 workload. h2 is a database benchmark. It first cre-
ates a large in-memory database and then conducts queries
over that database using the TPC-C workload [47]. It is the
latency distributions of those queries that is depicted Fig-
ure 6. As a result of its design, h2 has a large heap size (GMD)
but a low memory turnover (GTO), and each GC tends to
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(a) Simple latency, 2× heap (1.36GB).
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(b) Simple latency, 6× heap (4GB).
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(d)Metered latency, full smoothing, 6× heap (4GB).

Figure 6. User-experienced latency for h2, plotting the la-
tency distribution for 100000 requests using each collector.
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yield a lot (GCM). Although its allocation rate (ARA) is high,
much of that allocation occurs in the database construction
phase. As a result of these factors, h2 has low sensitivity to
heap size (GSS).
Recall that because metered latency takes the earlier of

the actual and notional uniform start times, but leaves the
end time unchanged, it can never be lower than the simple
latency. The similarity between the metered and simple la-
tency in Figure 6 is consistent with the pauses due to garbage
collection being small relative to the query execution time.
In fact the 90th percentile latency of the h2 queries is around
3ms. The heap profile of h2means that it needs few GCs, and
those are performed very quickly and productively, having
little impact on the query latency, which is why the metered
latency is almost identical to the simple latency, and why a
simple collector like Serial is able to perform relatively well.
The reason for the poor latency for the newer collectors

can be explained by h2’s LBO graph, Figure 16 of the appen-
dix. The new collectors have task clock overheads of around
70% at the 6×, rapidly rising above 100%. This means that
the collectors are consuming roughly half or more of the
available CPU cycles, with the result that individual queries
are running noticeably slower.

Looking closely at the 6× heaps, all collectors have slightly
worse latency at the far right of the graph (i.e. the tail). This
effect is particularly noticeable for Serial. This is because
when the heap is a lot larger, although collections will be
less frequent, each collection will likely take a little longer
since the larger heap will likely hold more live data than the
smaller heap. Thus pauses tend to be larger when the heap
is larger.

The noticeably worse metered latency for Shenandoah at
the 6× heap is explained by Shenandoah’s mutator throttling.
When it cannot collect fast enough to keep up with applica-
tion’s allocation needs, Shenandoah will throttle application
threads to make more hardware available for concurrent
garbage collection work. It does this aggressively in the 2×
heap, resulting in less application parallelism, and it is able
to keep up. However, at 6.0× it is less aggressive, and as
a consequence exposes the application threads that run to
more GC-induced overheads. This is evident from h2’s time
LBO, which shows time overheads well over 100% at 2×
due to the mutators being throttled. We also confirm this by
reviewing Shenandoah’s GC log.

This analysis of h2’s latency highlights the importance of a
multi-faceted performance analysis, including user-experi-
enced latency, wall clock and task clock LBO, as well as
insights into the workload’s characteristics revealed by Da-
Capo’s nominal statistics.

6.4 Architectural Sensitivity
Among the twelve nominal statistics most dominant in the
PCA analysis are six microarchitectural features: instruc-
tions per cycle (UIP), level one data cache miss rate (UDC),
last level cache miss rate (ULL), front and back end processor
boundedness (USF, USB) and SMT contention (USC). This
illustrates that the workloads in the suite exhibit microar-
chitectural diversity and substantially different degrees of
architectural sensitivity. To explore this further and to high-
light the analytical utility of the microarchitectural measures
included with the DaCapo nominal statistics, we consider
four workloads in more detail.
Instructions executed per clock (IPC) indicates how ef-

fectively an out of order processor is being utilized. The
maximum IPC of any workload is bounded by the number of
issue slots in the CPU, which is 6 on the AMD Zen4 machine
we use. The IPCs of the DaCapo Chopin workloads range
from biojava and jython with high IPCs of 4.76 and 2.76 to
h2o and xalanwith IPCs of just 0.92 and 0.94 respectively. We
will use these four workloads as examples in our exploration
of architectural sensitivity. The complete nominal statistics
for each of these workloads is included in the stats folder
of the benchmark suite and the appendix to this paper.

biojava. The high IPC (4.67) of biojava, which analyzes
protein sequences, reflects that it is a highly-tuned compu-
tational workload. The nominal stats reveal that with the
exception of pipeline restarts (UBR), the other nine ‘nega-
tive’ microarchitectural measures are among the lowest in
the suite. biojava is fairly insensitive to memory slowdown
(PMS) and last level cache size reduction (PLS). Consistent
with this, it has above average sensitivity to CPU frequency
scaling (PFS) and compiler configuration (PCC, PCS).

jython. The high IPC of jython (2.68) is less impressive
than biojava’s and has a different explanation. It is a python
language implementation that implements an interpreter.
It scores very well in most of the metrics, but suffers from
very high stalls due to bad speculation due to mispredic-
tion (UBP & UBS). It is insensitive to memory speed (PMS)
and last level cache size (PLS). This is all consistent with
jython spending most of its time in a small but somewhat
unpredictable interpreter loop.

xalan. The low IPC of xalan (0.98) is due to a mix of factors,
but poor locality is key. It has very high data cache, last
level cache, and DTLB miss rates (UDC, ULL, UDT), and is
sensitive to last level cache size (PLS).

h2o. Memory performance is an even bigger contributor to
h2o’s low IPC (0.89). It has the highest back end stalls (USB)
and last level cache misses (ULL), and very high data cache
and DTLB misses (UDC & UDT). It also has high sensitivity
to memory speed (PMS). These are consistent with h2o being
a memory-intensive machine learning workload.
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7 Conclusion
This paper outlines a problem: when methodological norms
cannot keep pace with innovation, we lack the tools we need
to notice important regressions. We motivate the problem
concretely and then respond to it three ways. First, we con-
tribute a benchmark suite that embodies fourteen years of
work, adding eight completely new workloads and bringing
existing workloads up to date. The workloads are rich, to-
gether constituting a codebase of roughly 16MLOC. They are
diverse, as shown by our principal components analysis. Sec-
ond, we contribute methodological innovations as part of the
suite, allowing researchers to easily analyze their workloads’
characteristics, and to measure user-experienced latency.
Finally, we contribute a number of methodological recom-
mendations. Although no benchmark suite or methodology
can ever be complete in any sense, we hope that together,
these contributions will strengthen our field’s methodologi-
cal grounding and in doing so help address the problem we
used to motivate the paper.
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A Artifact Appendix
A.1 Abstract
In this artifact, we provide DaCapo 23.11-Chopin release—an
overhaul of the DaCapo benchmark suite [7]. As a case study,
we use the new suite to measure the contemporary produc-
tion Java garbage collector performance. The results from
the experiments drive the methodological recommendations
for performance analysis in the paper.

A.2 Artifact Checklist
• Program: DaCapo Chopin benchmarks, which is a contri-
bution of this paper.

• Run-time environment: Recent Linux kernel (tested with
Ubuntu 20.04 LTS’s 5.15.0-113-generic kernel), Open-
JDK 21 (tested with Eclipse Temurin 21.0.3_9) for running
benchmarks, and Python 3.7 or newer for experiment au-
tomation (tested with Python 3.10.12). perf_event_open
syscall access required. sudo access required for Docker.

• Hardware: An x86_64 host. 16 cores/32 threads, and 32GB
RAM are recommended. AMDRyzen 9 7950Xwith frequency
scaling off, and 2 × 32GB DDR5-4800 DIMM usng JEDEC 40-
39-39-77 timing, are required to reproduce the performance
results.

• Execution: The machine should be otherwise idle.
• Metrics: Execution time, task clock, simple and metered
user-experience latency in various quantiles.

• Output: Console logs with performance metrics, and raw
latency CSVs for latency-sensitive benchmarks.

• Experiments: Experiments are automated via running-ng
v0.4.6, which provides rich customization options.

• Howmuchdisk space required (approximately)?: 30GB:
a 17GB image, which is 7GB after compression.

• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour

• How much time is needed to complete experiments
(approximately)?: 1 hour for a simiplified run, and 1 week
for a full run.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache License,
Version 2.0

• Workflow framework used?: running-ng v0.4.6
• Archived (provide DOI)?: 10.5281/zenodo.12682890

A.3 Description
A.3.1 How toAccess. Download from the Zenodo archive.

A.3.2 Hardware Dependencies. Please refer to the above
checklist.

A.3.3 Software Dependencies. Docker Engine required
on the host, and all other dependencies are provided in the
Docker image.

A.4 Installation
Import theDocker image using docker load < dacapo-asplos

-2025-artifact.tar.gz. A container can be launched us-
ing docker run -it --cap-add PERFMON --rm -v ./results

:/dacapo/results dacapo. All the below commands are to
be run inside the container under /dacapo as the working
directory.

A.5 Basic Test
running runbms ./results/ ./experiments/kick-the-tires

.yml -p "kick-the-tires" -s 2.

A.6 Experiment Workflow
Use running runbms and provide a folder to store results and
the path to the experiment definition file. Please refer to the
README.md of the artifact for more details.

A.7 Evaluation and Expected Results
Note that the full experiment run is time consuming, and we
provide a smaller subset (see README.md).
To reproduce the results for the time-space tradeoff (Sec-

tion 4.2) and lower bound garbage collector overheads (Sec-
tion 4.5), use running runbms ./results/ ./experiments/lbo

.yml 8 -p "lbo". The results can reproduce Figure 1 and
Figure 5.

To reproduce the results for user-experienced latency (Sec-
tion 4.4), use running runbms ./results/ ./experiments/latency

.yml -s 6,2 -p "latency". The results can reproduce Fig-
ure 3 and Figure 6.
To view the nominal statistics for each benchmark, pass

-p to the benchmark.
Please refer to the README.md of the artifact for sample

outputs, and other details.

A.8 Experiment Customization
We use running-ng to systematically run experiments, which
provides rich customization options. Experiments are defined
using composable and customizable YAML files. Please refer
to the README.md of the artifact for more details.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://github.com/anupli/running-ng/releases/tag/v0.4.6
https://doi.org/10.5281/zenodo.12682890
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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B Appendix: Benchmark Descriptions and Statistics
In this appendix, we include the complete nominal statistics, LBO graphs, and post-GC heap size graphs for each benchmark
in the 23.11-MR2 release. For the latency-sensitive benchmarks, we also include the simple and metered latency graphs for 2×
and 6× heaps.
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Table 1. The 47 nominal statistics used to characterize the DaCapo Chopin workloads. Not every statistic is available on or
applicable to every workload. We use these to conduct principal components analysis of the diversity of the suite, and to
inform our performance analysis of the workloads. The nominal statistics for each workload can be printed using DaCapo
Chopin’s ‘-p’ command line option. The first letter of the metric name reflects its grouping: Allocation, Bytecode, Garbage
collection, Performance, and U(𝜇)-architecture.

Metric Description

AOA nominal average object size (bytes)
AOL nominal 90-percentile object size (bytes)
AOM nominal median object size (bytes)
AOS nominal 10-percentile object size (bytes)
ARA nominal allocation rate (bytes / 𝜇sec)
BAL nominal aaload per usec
BAS nominal aastore per usec
BEF nominal execution focus / dominance of hot code
BGF nominal getfield per usec
BPF nominal putfield per usec
BUB nominal thousands of unique bytecodes executed
BUF nominal thousands of unique function calls executed
GCA nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC nominal GC count at 2X minimum heap size (G1)
GCM nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP nominal percentage of time spent in GC pauses at 2X minimum heap size (G1)
GLK nominal percent 10th iteration memory leakage (10 iterations / 1 iterations)
GMD nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU nominal minimum heap size (MB) for default size without compressed pointers
GMV nominal minimum heap size (MB) for vlarge size configuration (with compressed pointers)
GSS nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO nominal memory turnover (total alloc bytes / min heap bytes)
PCC nominal percentage slowdown due to forced c2 compilation compared to tiered baseline (compiler cost)
PCS nominal percentage slowdown due to worst compiler configuration compared to best (sensitivity to compiler)
PET nominal execution time (sec)
PFS nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN nominal percentage slowdown due to using the interpreter (sensitivity to interpreter)
PKP nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS nominal percentage slowdown due to slower DRAM (memory speed sensitivity)
PPE nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU nominal iterations to warm up to within 1.5 % of best
UAA nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30)

v AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF)

v AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UBM nominal backend bound (memory)
UBP nominal 1000 x bad speculation: mispredicts
UBR nominal 1000000 x bad speculation: pipeline restarts
UBS nominal 1000 x bad speculation
UDC nominal data cache misses per K instructions
UDT nominal DTLB misses per M instructions
UIP nominal 100 x instructions per cycle (IPC)
ULL nominal LLC misses M instructions
USB nominal 100 x back end bound
USC nominal 1000 x SMT contention
USF nominal 100 x front end bound
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Table 2. The twelve most determinant nominal statistics as revealed by our principal components analysis, and their values
for each of the DaCapo Chopin benchmarks. Each cell presents the rank of the respective benchmark with respect to that
nominal statistic (black) and the concrete value reported (grey).

Benchmark GLK GMU PET PFS PKP PWU UAA UAI UBP UBR UBS USF

avrora 9 22 6 4 1 13 19 22 21 22 21 1
0 7 4 18 56 2 53 -19 19 164 20 51

batik 9 3 13 1 21 9 16 12 8 4 8 19
0 229 2 20 0 4 80 25 52 2388 55 10

biojava 9 5 5 3 16 20 5 16 17 1 16 20
0 183 5 19 1 1 121 14 29 3487 33 6

cassandra 2 8 3 18 5 13 1 21 15 17 15 4
46 142 6 2 11 2 168 -9 37 619 38 40

eclipse 8 7 1 4 9 11 12 5 3 13 3 11
1 167 8 18 6 3 92 36 97 994 98 30

fop 9 20 17 11 12 2 18 6 1 3 1 8
0 17 1 13 2 8 76 35 134 2653 137 32

graphchi 9 6 8 10 16 13 6 6 22 16 22 22
0 179 3 14 1 2 112 35 5 704 5 4

h2 9 1 13 17 21 13 4 14 17 14 18 17
0 903 2 5 0 2 127 24 29 920 30 17

h2o 4 12 8 15 11 9 8 9 17 10 18 15
17 73 3 9 4 4 102 32 29 1126 30 18

jme 9 17 2 21 6 20 22 20 4 8 4 8
0 29 7 0 8 1 2 1 89 1226 90 32

jython 9 14 8 1 16 1 8 9 5 11 5 13
0 31 3 20 1 9 102 32 85 1105 86 21

kafka 9 4 3 20 2 11 20 17 16 20 17 3
0 208 6 1 25 3 19 13 30 547 31 43

luindex 9 14 8 4 12 13 13 12 2 2 2 18
0 31 3 18 2 2 90 25 109 3280 112 12

lusearch 9 19 13 13 7 2 14 1 11 18 11 12
0 21 2 11 7 8 87 56 40 596 41 23

pmd 7 2 17 13 16 4 6 2 13 7 12 13
5 269 1 11 1 7 112 47 38 1295 39 21

spring 9 13 13 16 7 13 14 11 7 6 7 8
0 70 2 8 7 2 87 30 60 1475 61 32

sunflow 9 14 8 8 16 6 11 15 20 5 20 21
0 31 3 16 1 6 98 19 21 2380 24 5

tomcat 9 18 6 18 3 13 21 19 10 19 10 2
0 24 4 2 19 2 14 4 44 584 45 45

tradebeans 3 9 17 7 12 6 3 3 13 9 12 5
26 141 1 17 2 6 144 42 38 1187 39 38

tradesoap 6 11 17 8 12 8 2 8 6 12 6 7
6 115 1 16 2 5 147 34 73 1087 74 35

xalan 5 20 17 12 4 20 10 17 12 15 12 6
7 17 1 12 14 1 101 13 39 785 39 36

zxing 1 10 17 22 10 4 17 3 8 21 9 15
120 127 1 -1 5 7 77 42 52 374 52 18
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B.1 Avrora
This workload is based on the AVRORA simulation and analysis framework for AVR micro-controllers [1]. It is one of the most
unusual workloads in DaCapo Chopin. Each simulated entity in the microcontroller is represented by a thread, so there is a
high degree of fine-grained concurrency. It has the second lowest allocation rate in the suite (ARA), the highest percentage of
time spent in the kernel (PKP), is very insensitive to compiler selection (PCS), and is the most front end-bound workload
(USF). The last three of these are likely due to its very heavy use of locking primitives. It has low back end stalls (USB), and
low bad speculation (UBS). Although avrora is highly concurrent, it has very low parallel efficiency (PPE).

Table 3. Complete nominal statistics for avrora. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 1 34 18 28 58 211 nominal average object size (bytes)
AOL 1 32 19 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 1 56 19 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 4 31 13 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 6 5 9 1 4 29 nominal execution focus / dominance of hot code
BGF 5 692 10 0 527 32087 nominal getfield per usec
BPF 7 206 7 0 83 3863 nominal putfield per usec
BUB 4 33 12 1 34 177 nominal thousands of unique bytecodes executed
BUF 5 4 10 0 4 29 nominal thousands of unique function calls
GCA 1 80 20 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 2 551 18 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 2 80 19 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 0 5 22 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 1 15 19 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 2 5 18 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 0 7 22 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 3 18 17 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 3 33 14 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 2 83 19 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 1 7 21 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 8 4 6 1 3 8 nominal execution time (sec)
PFS 9 18 4 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 1 7 21 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 10 56 1 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 3 2 16 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 6 6 10 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 2 3 19 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 10 4 2 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 2 53 19 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 0 -19 22 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 5 23 12 5 23 41 nominal backend bound (memory)
UBP 1 19 21 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 0 164 22 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 1 20 21 5 39 137 nominal 1000 x bad speculation
UDC 8 18 5 2 12 27 nominal data cache misses per K instructions
UDT 4 131 14 14 174 576 nominal DTLB misses per M instructions
UIP 3 113 17 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 6 3398 9 335 2645 8506 nominal LLC misses per M instructions
USB 4 26 15 7 29 53 nominal 100 x back end bound
USC 1 7 20 1 52 351 nominal 1000 x SMT contention
USF 10 51 1 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 7. Lower bounds on the overheads [11] for avrora for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 8. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.2 Batik
This workload uses the Batik Apache scalable vector graphics (SVG) toolkit to render a number of svg files. Batik consists of
nearly 400 K lines of Java code. It has very low allocation rate (ARA). It has the lowest memory turnover (GTO) and is the most
sensitive workload to CPU frequency scaling (PFS). It is one of the most back end bound (USB) and one of the highest pipeline
restarts (UBR), yet has one of the highest IPCs (UIP). Its large configuration has a 1.7 GB minimum heap size.

Table 4. Complete nominal statistics for batik. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 5 58 10 28 58 211 nominal average object size (bytes)
AOL 6 72 9 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 1 506 18 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 6 41 9 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 5 4 11 1 4 29 nominal execution focus / dominance of hot code
BGF 1 126 18 0 527 32087 nominal getfield per usec
BPF 2 28 17 0 83 3863 nominal putfield per usec
BUB 4 32 13 1 34 177 nominal thousands of unique bytecodes executed
BUF 5 4 10 0 4 29 nominal thousands of unique function calls
GCA 10 121 2 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 1 111 20 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 10 132 2 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 7 9 8 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 8 175 5 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 8 1759 4 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 5 19 11 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 9 229 3 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 4 40 15 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 0 3 20 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 8 306 5 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 3 24 17 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 5 2 13 1 3 8 nominal execution time (sec)
PFS 10 20 1 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 3 24 17 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 1 0 21 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 2 0 19 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 4 2 15 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 3 4 16 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 6 4 9 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 3 80 16 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 5 25 12 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 9 37 3 5 23 41 nominal backend bound (memory)
UBP 7 52 8 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 9 2388 4 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 7 55 8 5 39 137 nominal 1000 x bad speculation
UDC 2 4 19 2 12 27 nominal data cache misses per K instructions
UDT 2 50 19 14 174 576 nominal DTLB misses per M instructions
UIP 8 228 5 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 3 1872 16 335 2645 8506 nominal LLC misses per M instructions
USB 9 46 3 7 29 53 nominal 100 x back end bound
USC 2 16 19 1 52 351 nominal 1000 x SMT contention
USF 2 10 19 4 23 51 nominal 100 x front end bound
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Figure 9. Lower bounds on the overheads [11] for batik for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 10. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.3 Biojava
(New) This workload uses the BioJava framework to generate ten physico-chemical properties of protein sequences of different
sizes. BioJava consists of over 300K lines of Java code. The workload has the tightest hot code focus in the suite (BEF), the
highest IPC (UIP), the lowest data cache misses (UDC), very low DTLB misses (UDT), last level cache misses (ULL), front and
back end stalls (USB, USF), and SMT contention (USC), as well as the smallest average object size (AOA) and the largest 10th
percentile object size (AOS). It is one of the most sensitive benchmarks to heap size (GSS). Its large configuration has a 1GB
minimum heap size.

Table 5. Complete nominal statistics for biojava. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 0 28 20 28 58 211 nominal average object size (bytes)
AOL 0 24 20 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 4 2041 12 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 1 0 18 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 9 28 2 1 4 29 nominal execution focus / dominance of hot code
BGF 2 171 17 0 527 32087 nominal getfield per usec
BPF 1 2 19 0 83 3863 nominal putfield per usec
BUB 2 18 17 1 34 177 nominal thousands of unique bytecodes executed
BUF 3 2 15 0 4 29 nominal thousands of unique function calls
GCA 7 106 8 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 7 2172 8 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 5 98 12 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 6 93 10 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 7 1027 6 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 3 7 16 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 8 183 5 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 10 7107 2 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 6 102 8 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 6 224 9 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 6 106 9 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 8 5 5 1 3 8 nominal execution time (sec)
PFS 9 19 3 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 6 106 9 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 3 1 16 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 3 1 17 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 2 0 19 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 5 5 13 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 1 1 20 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 8 121 5 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 3 14 16 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 1 15 21 5 23 41 nominal backend bound (memory)
UBP 3 29 17 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 10 3487 1 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 3 33 16 5 39 137 nominal 1000 x bad speculation
UDC 0 2 22 2 12 27 nominal data cache misses per K instructions
UDT 1 30 21 14 174 576 nominal DTLB misses per M instructions
UIP 10 476 1 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 2 1427 19 335 2645 8506 nominal LLC misses per M instructions
USB 1 19 21 7 29 53 nominal 100 x back end bound
USC 4 41 14 1 52 351 nominal 1000 x SMT contention
USF 1 6 20 4 23 51 nominal 100 x front end bound
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Figure 11. Lower bounds on the overheads [11] for biojava for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 12. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.4 Cassandra
(New) This workload executes the Yahoo! Cloud Serving Benchmark (YCSB) over the Apache Cassandra NoSQL database
management system, which consists of nearly 700K lines of Java code. It is a request-based workload, reporting request
latencies. cassandra is one of the least GC-intensive workloads in the suite (GCP), but it suffers memory leakage (GLK). It has
the highest DTLB miss rage rate (UDT), one of the highest data cache miss rates (UDC), one of the highest last level cache
miss rates (ULL), and is one of the most front end bound (USF), yielding low IPC (UIP).

Table 6. Complete nominal statistics for cassandra. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 3 40 15 28 58 211 nominal average object size (bytes)
AOL 5 56 11 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 3 890 15 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 3 9 15 0 34 2204 nominal aaload per usec
BAS 6 1 9 0 1 126 nominal aastore per usec
BEF 3 3 15 1 4 29 nominal execution focus / dominance of hot code
BGF 4 314 13 0 527 32087 nominal getfield per usec
BPF 4 57 13 0 83 3863 nominal putfield per usec
BUB 7 114 6 1 34 177 nominal thousands of unique bytecodes executed
BUF 8 18 5 0 4 29 nominal thousands of unique function calls
GCA 6 103 10 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 3 659 16 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 7 101 8 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 10 46 2 0 0 120 nominal percent 10th iteration memory leakage
GMD 7 174 7 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 5 174 10 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 9 77 3 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 7 142 8 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 2 14 19 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 4 34 13 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 1 60 21 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 3 31 16 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 9 6 3 1 3 8 nominal execution time (sec)
PFS 2 2 18 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 3 31 16 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 8 11 5 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 4 3 15 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 4 2 15 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 7 13 7 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 10 168 1 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 1 -9 21 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 6 26 9 5 23 41 nominal backend bound (memory)
UBP 4 37 15 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 3 619 17 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 4 38 15 5 39 137 nominal 1000 x bad speculation
UDC 10 24 2 2 12 27 nominal data cache misses per K instructions
UDT 10 576 1 14 174 576 nominal DTLB misses per M instructions
UIP 2 108 19 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 9 5719 3 335 2645 8506 nominal LLC misses per M instructions
USB 5 29 11 7 29 53 nominal 100 x back end bound
USC 6 92 10 1 52 351 nominal 1000 x SMT contention
USF 9 40 4 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 13. Lower bounds on the overheads [11] for cassandra for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 14. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 15. Distribution of request latencies for cassandra for each of OpenJDK 21’s six production collectors. The figures in
the left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.
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B.5 Eclipse
This workload executes the eclipse performance tests. Eclipse is a widely used IDE consisting of over 6M lines of Java code. It
has the highest concentration of hot code (BEF) and is one of the most sensitive workload to compiler configuration (PCC, PCS)
and one of the most sensitive to last level cache size (PLS) and CPU frequency scaling (PFS). It suffers high bad speculation
due to mispredicts (UBS, UBP).

Table 7. Complete nominal statistics for eclipse. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 7 84 6 28 58 211 nominal average object size (bytes)
AOL 8 88 4 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 3 1043 14 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 1 0 18 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 10 29 1 1 4 29 nominal execution focus / dominance of hot code
BGF 0 0 20 0 527 32087 nominal getfield per usec
BPF 0 0 20 0 83 3863 nominal putfield per usec
BUB 0 1 20 1 34 177 nominal thousands of unique bytecodes executed
BUF 0 0 20 0 4 29 nominal thousands of unique function calls
GCA 2 83 19 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 5 997 11 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 1 77 20 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 5 2 12 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 7 1 8 0 0 120 nominal percent 10th iteration memory leakage
GMD 7 135 8 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 4 139 12 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 5 13 12 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 7 167 7 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 2 16 18 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 5 52 11 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 9 349 4 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 9 224 3 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 10 8 1 1 3 8 nominal execution time (sec)
PFS 9 18 4 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 9 224 3 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 6 6 9 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 7 23 7 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 5 5 12 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 5 5 13 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 3 11 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 5 92 12 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 8 36 5 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 5 25 11 5 23 41 nominal backend bound (memory)
UBP 9 97 3 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 5 994 13 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 9 98 3 5 39 137 nominal 1000 x bad speculation
UDC 5 11 13 2 12 27 nominal data cache misses per K instructions
UDT 7 283 8 14 174 576 nominal DTLB misses per M instructions
UIP 6 178 10 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 6 3108 10 335 2645 8506 nominal LLC misses per M instructions
USB 5 29 11 7 29 53 nominal 100 x back end bound
USC 3 30 16 1 52 351 nominal 1000 x SMT contention
USF 5 30 11 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 16. Lower bounds on the overheads [11] for eclipse for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 17. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.6 Fop
This workload uses the Apache fop print formatter to render a number of XLS-FO files as pdfs. The Apache fop framework
consists of over 400K lines of Java code. fop has the largest number of unique bytecodes executed (BUB), and is one of the
slowest benchmark to warm up (PWU). It has one of the highest percentages of time spent in GC pauses at a 2× heap (GCP),
and is one of the most heap-size sensitive workloads (GSS). It suffers from bad speculation (UBS, UBP).

Table 8. Complete nominal statistics for fop. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 5 58 10 28 58 211 nominal average object size (bytes)
AOL 5 56 11 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 6 3340 9 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 5 34 11 0 34 2204 nominal aaload per usec
BAS 7 6 6 0 1 126 nominal aastore per usec
BEF 1 1 19 1 4 29 nominal execution focus / dominance of hot code
BGF 5 527 11 0 527 32087 nominal getfield per usec
BPF 6 95 9 0 83 3863 nominal putfield per usec
BUB 10 177 1 1 34 177 nominal thousands of unique bytecodes executed
BUF 9 26 3 0 4 29 nominal thousands of unique function calls
GCA 7 107 7 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 5 841 13 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 7 107 7 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 9 23 3 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 1 13 20 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GMS 4 9 15 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 1 17 20 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 7 755 7 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 5 75 10 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 10 1083 1 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 2 23 18 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 5 13 11 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 2 23 18 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 5 2 12 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 9 37 3 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 8 12 6 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 6 9 9 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 10 8 2 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 2 76 18 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 8 35 6 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 4 21 15 5 23 41 nominal backend bound (memory)
UBP 10 134 1 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 9 2653 3 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 10 137 1 5 39 137 nominal 1000 x bad speculation
UDC 6 14 10 2 12 27 nominal data cache misses per K instructions
UDT 5 174 12 14 174 576 nominal DTLB misses per M instructions
UIP 6 181 9 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 4 2138 15 335 2645 8506 nominal LLC misses per M instructions
USB 2 25 18 7 29 53 nominal 100 x back end bound
USC 2 19 18 1 52 351 nominal 1000 x SMT contention
USF 7 32 8 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 18. Lower bounds on the overheads [11] for fop for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 19. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.7 Graphchi
(New) This workload performs ALS matrix factorization using the Netflix Challenge dataset with the Java port of the GraphChi
engine [26]. It has one of the lowest number of unique bytecodes executed (BUB), one of the highest focuses of hot code (BEF)
and one of the highest aaload and getfield rates (BAL, BGF). It is the most sensitive workload to compiler configuration (PCS).
It has the lowest front end stalls (USF) and bad speculation (UBP), as well as low DTLB, and data cache miss rates (UDT,
UDC), yielding one of the best IPCs (UIP) despite suffering SMT contention (USC) and being backend bound (USB). In its large
configuration, it has a 1.1 GB minimum heap size.

Table 9. Complete nominal statistics for graphchi. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 8 110 4 28 58 211 nominal average object size (bytes)
AOL 9 160 2 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 2 16 16 16 24 24 nominal 10-percentile object size (bytes)
ARA 5 2737 10 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 10 2204 1 0 34 2204 nominal aaload per usec
BAS 6 1 9 0 1 126 nominal aastore per usec
BEF 9 12 3 1 4 29 nominal execution focus / dominance of hot code
BGF 9 9217 3 0 527 32087 nominal getfield per usec
BPF 3 43 15 0 83 3863 nominal putfield per usec
BUB 1 8 19 1 34 177 nominal thousands of unique bytecodes executed
BUF 1 1 18 0 4 29 nominal thousands of unique function calls
GCA 9 113 4 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 6 1262 10 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 8 108 6 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 5 2 12 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 8 175 5 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 8 1183 5 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 10 141 2 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 8 179 6 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 6 382 10 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 4 38 12 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 7 276 7 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 10 323 1 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 7 3 8 1 3 8 nominal execution time (sec)
PFS 6 14 10 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 10 323 1 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 3 1 16 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 4 5 14 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 7 10 7 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 6 9 9 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 8 112 6 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 8 35 6 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 2 19 18 5 23 41 nominal backend bound (memory)
UBP 0 5 22 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 3 704 16 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 0 5 22 5 39 137 nominal 1000 x bad speculation
UDC 1 3 20 2 12 27 nominal data cache misses per K instructions
UDT 1 45 20 14 174 576 nominal DTLB misses per M instructions
UIP 9 234 4 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 3 1746 17 335 2645 8506 nominal LLC misses per M instructions
USB 8 38 6 7 29 53 nominal 100 x back end bound
USC 9 192 4 1 52 351 nominal 1000 x SMT contention
USF 0 4 22 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 20. Lower bounds on the overheads [11] for graphchi for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 21. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.8 H2
This workload is latency-sensitive. It executes a TPC-C-like transactional workload over the H2 database configured for
in-memory operation. h2 has about 240K lines of Java source code. It has very low memory turnover (GTO) and has high
sensitivity to slower DRAM speeds (PMS). It has high DTLB and data cache miss rates (UDT, UDC), high SMT contention
(USC) and is very backend memory bound (UBM). It spends very little time in kernel mode (PKP). It has the largest heap sizes
for default, large, and vlarge configurations (681MB, 10.2 GB, and 20.6 GB).

Table 10. Complete nominal statistics for h2. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 3 41 14 28 58 211 nominal average object size (bytes)
AOL 5 64 10 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 9 11858 2 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 8 234 5 0 34 2204 nominal aaload per usec
BAS 8 28 4 0 1 126 nominal aastore per usec
BEF 7 7 7 1 4 29 nominal execution focus / dominance of hot code
BGF 7 3677 6 0 527 32087 nominal getfield per usec
BPF 8 601 4 0 83 3863 nominal putfield per usec
BUB 1 17 18 1 34 177 nominal thousands of unique bytecodes executed
BUF 3 2 15 0 4 29 nominal thousands of unique function calls
GCA 5 98 13 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 3 552 17 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 2 82 18 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 5 4 11 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 10 681 1 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 10 10201 1 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 8 69 6 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 10 903 1 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GMV 10 20641 1 371 1123 20641 nominal minimum heap size (MB) for vlarge size configuration (with compressed pointers)
GSS 3 38 16 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 2 30 16 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 2 87 18 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 4 55 14 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 5 2 13 1 3 8 nominal execution time (sec)
PFS 3 5 17 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 4 55 14 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 1 0 21 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 9 31 4 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 10 40 2 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 8 24 5 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 9 127 4 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 4 24 14 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 10 40 2 5 23 41 nominal backend bound (memory)
UBP 3 29 17 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 4 920 14 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 2 30 18 5 39 137 nominal 1000 x bad speculation
UDC 7 16 8 2 12 27 nominal data cache misses per K instructions
UDT 9 476 4 14 174 576 nominal DTLB misses per M instructions
UIP 5 135 13 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 7 4315 7 335 2645 8506 nominal LLC misses per M instructions
USB 9 43 4 7 29 53 nominal 100 x back end bound
USC 8 140 6 1 52 351 nominal 1000 x SMT contention
USF 3 17 17 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 22. Lower bounds on the overheads [11] for h2 for each of OpenJDK 21’s six production garbage collectors as a function
of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows the
overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 23. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 24. Distribution of request latencies for h2 for each of OpenJDK 21’s six production collectors. The figures in the left
top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered latency,
which models a request queue and the cascading effect of delays.
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B.9 H2o
(New) This workloads performs machine learning using the H2O ML platform and the 201908-citibike-tripdata dataset. H2O
consists of about 330 K lines of Java code. h2o is very sensitive to slower DRAM speeds (PMS) and exhibits one of the highest
standard deviations among invocations (PSD). It has the one of the smallest median object sizes (AOM) but one of the largest
average object sizes (AOA). It has the lowest IPC (UIP) and very high DTLB, last level cache and data cache miss rates (UDT,
ULL, UDC) and is among the most back end bound (USB, UBM). Its large configuration has a 2.5 GB minimum heap size.

Table 11. Complete nominal statistics for h2o. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 9 142 2 28 58 211 nominal average object size (bytes)
AOL 9 152 3 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 2 16 16 16 24 24 nominal 10-percentile object size (bytes)
ARA 7 5740 7 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 7 231 6 0 34 2204 nominal aaload per usec
BAS 9 31 3 0 1 126 nominal aastore per usec
BEF 6 6 8 1 4 29 nominal execution focus / dominance of hot code
BGF 7 3002 7 0 527 32087 nominal getfield per usec
BPF 6 142 8 0 83 3863 nominal putfield per usec
BUB 6 87 8 1 34 177 nominal thousands of unique bytecodes executed
BUF 6 11 8 0 4 29 nominal thousands of unique function calls
GCA 8 112 6 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 8 5118 5 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 8 111 5 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 8 12 6 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 9 17 4 0 0 120 nominal percent 10th iteration memory leakage
GMD 5 72 12 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 9 2543 3 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 7 29 8 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 5 73 12 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 5 249 12 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 7 187 6 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 5 207 11 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 5 57 13 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 7 3 8 1 3 8 nominal execution time (sec)
PFS 4 9 15 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 5 57 13 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 5 4 11 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 5 11 11 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 9 21 3 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 3 4 16 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 9 2 4 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 6 4 9 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 7 102 8 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 6 32 9 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 10 41 1 5 23 41 nominal backend bound (memory)
UBP 3 29 17 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 6 1126 10 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 2 30 18 5 39 137 nominal 1000 x bad speculation
UDC 9 23 3 2 12 27 nominal data cache misses per K instructions
UDT 9 499 3 14 174 576 nominal DTLB misses per M instructions
UIP 0 89 22 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 10 8506 1 335 2645 8506 nominal LLC misses per M instructions
USB 10 53 1 7 29 53 nominal 100 x back end bound
USC 7 102 7 1 52 351 nominal 1000 x SMT contention
USF 4 18 15 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 25. Lower bounds on the overheads [11] for h2o for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 26. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.10 Jme
(New) This workload is latency-sensitive, using jMonkey Engine, a 3-D game development suite, to render a series of video
frames. jme has about 200 K lines of Java source code. It is one of the least GC-intensive workloads (GCA, GCC, GCM, GCP,
GSS, GTO). It is insensitive to frequency scaling (PFS), compiler or interpreter choice (PCC, PCS, PIN), and warms up quickly
(PWU). These factors are consistent with jme making extensive use of the GPU. It has the lowest SMT contention (USC) and is
one of the most backend bound due to the CPU.
Table 12. Complete nominal statistics for jme. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 4 42 13 28 58 211 nominal average object size (bytes)
AOL 5 56 11 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 0 54 20 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 1 0 18 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 5 4 11 1 4 29 nominal execution focus / dominance of hot code
BGF 1 26 19 0 527 32087 nominal getfield per usec
BPF 1 10 18 0 83 3863 nominal putfield per usec
BUB 5 34 11 1 34 177 nominal thousands of unique bytecodes executed
BUF 5 4 10 0 4 29 nominal thousands of unique function calls
GCA 1 24 21 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 0 31 22 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 1 24 21 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 1 0 21 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 4 29 14 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 2 29 17 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 7 29 8 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 3 29 17 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 1 0 21 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 1 12 18 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 1 72 20 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 0 1 22 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 10 7 2 1 3 8 nominal execution time (sec)
PFS 1 0 21 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 0 1 22 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 8 8 6 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 2 0 19 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 2 0 19 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 2 3 19 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 1 1 20 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 0 2 22 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 1 1 20 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 2 19 18 5 23 41 nominal backend bound (memory)
UBP 9 89 4 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 7 1226 8 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 9 90 4 5 39 137 nominal 1000 x bad speculation
UDC 5 11 13 2 12 27 nominal data cache misses per K instructions
UDT 4 96 15 14 174 576 nominal DTLB misses per M instructions
UIP 7 204 7 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 2 1558 18 335 2645 8506 nominal LLC misses per M instructions
USB 4 27 14 7 29 53 nominal 100 x back end bound
USC 0 1 22 1 52 351 nominal 1000 x SMT contention
USF 7 32 8 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 27. Lower bounds on the overheads [11] for jme for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 28. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 29. Distribution of request latencies for jme for each of OpenJDK 21’s six production collectors. The figures in the left
top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered latency,
which models a request queue and the cascading effect of delays.
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B.11 Jython
The jython workload executes a standard Python performance test on top of Jython, a Java implementation of the Python
programming language. Jython has about 310 K lines of Java code. It has the most unique function calls executed (BUF) and a
large number of unique bytecodes executed (BUB). Consistent with this, it has the longest warmup (PWU) and is sensitive to
compiler configuration (PCS, PIN). It is the most sensitive to frequency scaling (PFS), has very high IPC (UIP) and high bad
speculation due to mispredicts (UBS, UBP).

Table 13. Complete nominal statistics for jython. Value represents the concrete value for that metric with respect toDescription.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 2 37 17 28 58 211 nominal average object size (bytes)
AOL 3 48 15 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 2 16 16 16 24 24 nominal 10-percentile object size (bytes)
ARA 4 1462 13 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 5 39 10 0 34 2204 nominal aaload per usec
BAS 8 13 5 0 1 126 nominal aastore per usec
BEF 7 8 6 1 4 29 nominal execution focus / dominance of hot code
BGF 3 256 15 0 527 32087 nominal getfield per usec
BPF 5 83 11 0 83 3863 nominal putfield per usec
BUB 8 149 4 1 34 177 nominal thousands of unique bytecodes executed
BUF 10 29 1 0 4 29 nominal thousands of unique function calls
GCA 6 104 9 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 8 3457 6 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 6 100 9 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 6 7 10 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 3 25 17 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 1 25 18 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 6 25 10 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 4 31 14 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 8 2024 5 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 7 139 7 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 6 211 10 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 10 277 2 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 7 3 8 1 3 8 nominal execution time (sec)
PFS 10 20 1 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 10 277 2 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 3 1 16 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 3 1 17 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 2 0 19 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 5 5 13 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 10 9 1 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 7 102 8 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 6 32 9 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 1 17 20 5 23 41 nominal backend bound (memory)
UBP 8 85 5 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 5 1105 11 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 8 86 5 5 39 137 nominal 1000 x bad speculation
UDC 4 9 15 2 12 27 nominal data cache misses per K instructions
UDT 3 78 16 14 174 576 nominal DTLB misses per M instructions
UIP 10 268 2 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 1 1160 20 335 2645 8506 nominal LLC misses per M instructions
USB 1 20 20 7 29 53 nominal 100 x back end bound
USC 4 35 15 1 52 351 nominal 1000 x SMT contention
USF 5 21 13 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 30. Lower bounds on the overheads [11] for jython for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 31. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.12 Kafka
(New) This is a latency-sensitive workload that issues requests to the Apache Kafka framework for high-throughput publish-
subscribe messaging. Kafka has about 840 K lines of Java and Scala source code. kafka has low garbage collection sensitivity
(GSS, GCP). It is kernel-intensive (PKP) and insensitive to CPU frequency scaling (PFS) and memory speed (PMS). It has a
very high data cache and last level cache miss rates (UDC, ULL) and is one of the most front end bound workloads (USF).

Table 14. Complete nominal statistics for kafka. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 4 54 12 28 58 211 nominal average object size (bytes)
AOL 5 56 11 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 2 16 16 16 24 24 nominal 10-percentile object size (bytes)
ARA 2 803 17 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 2 1 17 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 1 1 19 1 4 29 nominal execution focus / dominance of hot code
BGF 2 183 16 0 527 32087 nominal getfield per usec
BPF 3 55 14 0 83 3863 nominal putfield per usec
BUB 9 159 3 1 34 177 nominal thousands of unique bytecodes executed
BUF 9 28 2 0 4 29 nominal thousands of unique function calls
GCA 2 86 18 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 2 221 19 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 4 86 14 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 1 0 21 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 10 201 2 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 6 345 8 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 10 157 1 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 9 208 4 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 1 0 21 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 2 19 17 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 7 255 8 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 4 34 15 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 9 6 3 1 3 8 nominal execution time (sec)
PFS 1 1 20 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 4 34 15 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 10 25 2 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 2 0 19 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 2 0 19 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 2 3 19 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 3 11 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 1 19 20 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 3 13 17 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 6 26 9 5 23 41 nominal backend bound (memory)
UBP 3 30 16 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 1 547 20 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 3 31 17 5 39 137 nominal 1000 x bad speculation
UDC 10 27 1 2 12 27 nominal data cache misses per K instructions
UDT 6 230 10 14 174 576 nominal DTLB misses per M instructions
UIP 4 127 14 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 10 6819 2 335 2645 8506 nominal LLC misses per M instructions
USB 6 30 10 7 29 53 nominal 100 x back end bound
USC 3 20 17 1 52 351 nominal 1000 x SMT contention
USF 9 43 3 4 23 51 nominal 100 x front end bound



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Stephen M. Blackburn, Zixian Cai, Rui Chen, Xi Yang, John Zhang, and John Zigman

201 402 603 804 1005 1206
Heap size (MB)

1 2 3 4 5 6
Heap size (× minheap)

1.00

1.02

1.04

1.06

N
or

m
al

iz
ed

 t
im

e 
ov

er
he

ad
 (L

B
O

)

(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 32. Lower bounds on the overheads [11] for kafka for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 33. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.

0 90 99 99.9 99.99 99.999 99.9999
Percentile

10−1

100

101

R
eq

ue
st

 la
te

nc
y 

(m
s)

Serial

Parallel

G1

Shen.

ZGC*

(d)Metered latency with 100ms smoothing, 6.0× heap.

0 90 99 99.9 99.99 99.999 99.9999
Percentile

10−1

100

101

102

R
eq

ue
st

 la
te

nc
y 

(m
s)

(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 34. Distribution of request latencies for kafka for each of OpenJDK 21’s six production collectors. The figures in the
left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Stephen M. Blackburn, Zixian Cai, Rui Chen, Xi Yang, John Zhang, and John Zigman

B.13 Luindex
This workload constructs a search index from a document corpus using the Apache Lucene search engine. Lucene has about
830K lines of Java source code. luindex has the largest objects in the suite (AOA, AOL, AOM, AOS). It is one of the most
sensitive to CPU frequency scaling (PFS) and last level cache size (PLS). It has one of the highest IPCs (UIP) but suffers one of
the worst bad speculation rates (UBS, UBR, UBP), but has low cache miss rates (UDC, UDT, ULL).

Table 15.Complete nominal statistics for luindex.Value represents the concrete value for that metric with respect toDescription.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 10 211 1 28 58 211 nominal average object size (bytes)
AOL 8 88 4 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 2 841 16 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 4 33 12 0 34 2204 nominal aaload per usec
BAS 6 1 9 0 1 126 nominal aastore per usec
BEF 3 3 15 1 4 29 nominal execution focus / dominance of hot code
BGF 6 1179 9 0 527 32087 nominal getfield per usec
BPF 7 306 6 0 83 3863 nominal putfield per usec
BUB 5 54 10 1 34 177 nominal thousands of unique bytecodes executed
BUF 6 5 9 0 4 29 nominal thousands of unique function calls
GCA 4 93 15 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 6 1459 9 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 6 100 9 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 4 29 14 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 3 37 15 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 5 13 12 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 4 31 14 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 4 56 14 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 6 76 9 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 5 201 12 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 5 61 12 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 7 3 8 1 3 8 nominal execution time (sec)
PFS 9 18 4 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 5 61 12 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 5 2 12 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 10 38 2 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 4 2 15 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 2 3 19 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 5 90 13 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 5 25 12 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 8 31 6 5 23 41 nominal backend bound (memory)
UBP 10 109 2 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 10 3280 2 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 10 112 2 5 39 137 nominal 1000 x bad speculation
UDC 2 6 18 2 12 27 nominal data cache misses per K instructions
UDT 2 66 18 14 174 576 nominal DTLB misses per M instructions
UIP 9 263 3 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 1 930 21 335 2645 8506 nominal LLC misses per M instructions
USB 7 36 7 7 29 53 nominal 100 x back end bound
USC 1 4 21 1 52 351 nominal 1000 x SMT contention
USF 2 12 18 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 35. Lower bounds on the overheads [11] for luindex for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0

10

20

30

40

50

H
ea

p 
si

ze
 (M

B
)

Figure 36. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.14 Lusearch
This is a latency-sensitive workload that issues search requests to the Apache Lucene search engine. lusearch has the highest
memory turn over (GTO), performs the most GCs (GCC), has the highest allocation rate (ARA), has the highest aastore and
putfield rates (BAS, BPF), and one of the highest getfield rates (BGF). It uses a very small heap (GCA, GMD).

Table 16. Complete nominal statistics for lusearch. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 7 75 7 28 58 211 nominal average object size (bytes)
AOL 8 88 4 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 10 23556 1 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 8 252 4 0 34 2204 nominal aaload per usec
BAS 10 126 1 0 1 126 nominal aastore per usec
BEF 6 5 9 1 4 29 nominal execution focus / dominance of hot code
BGF 9 12289 2 0 527 32087 nominal getfield per usec
BPF 10 3863 1 0 83 3863 nominal putfield per usec
BUB 3 26 14 1 34 177 nominal thousands of unique bytecodes executed
BUF 3 3 14 0 4 29 nominal thousands of unique function calls
GCA 3 89 16 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 10 22408 1 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 4 84 15 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 10 32 2 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 2 19 19 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 4 109 13 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 2 5 18 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 2 21 19 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 9 2159 4 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 10 1211 1 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 4 172 14 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 9 202 4 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 5 2 13 1 3 8 nominal execution time (sec)
PFS 5 11 13 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 9 202 4 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 7 7 7 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 7 19 8 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 7 9 8 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 9 34 4 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 9 3 3 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 10 8 2 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 4 87 14 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 10 56 1 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 3 20 17 5 23 41 nominal backend bound (memory)
UBP 5 40 11 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 2 596 18 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 5 41 11 5 39 137 nominal 1000 x bad speculation
UDC 5 12 12 2 12 27 nominal data cache misses per K instructions
UDT 5 154 13 14 174 576 nominal DTLB misses per M instructions
UIP 5 149 12 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 5 2830 11 335 2645 8506 nominal LLC misses per M instructions
USB 5 29 11 7 29 53 nominal 100 x back end bound
USC 9 198 3 1 52 351 nominal 1000 x SMT contention
USF 5 23 12 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 37. Lower bounds on the overheads [11] for lusearch for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 38. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 39. Distribution of request latencies for lusearch for each of OpenJDK 21’s six production collectors. The figures in the
left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.



Rethinking Java Performance Analysis ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

B.15 Pmd
This workload uses the PMD static code analyzer to check a corpus of source code. PMD has about 120 K lines of Java code.
pmd is one of the most last level cache size-sensitive workloads (PLS) and is sensitive to memory speed (PMS). It is one of the
least generational workloads (GCM), and is one of the slowest to warm up (PWU). It is among the most back end bound (USB,
UBM), with high SMT contention (USC) and high last level cache miss rate (ULL).

Table 17. Complete nominal statistics for pmd. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 1 32 19 28 58 211 nominal average object size (bytes)
AOL 3 48 15 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 2 16 16 16 24 24 nominal 10-percentile object size (bytes)
ARA 8 6721 5 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 6 82 8 0 34 2204 nominal aaload per usec
BAS 6 1 9 0 1 126 nominal aastore per usec
BEF 5 4 11 1 4 29 nominal execution focus / dominance of hot code
BGF 6 1719 8 0 527 32087 nominal getfield per usec
BPF 8 583 5 0 83 3863 nominal putfield per usec
BUB 7 95 7 1 34 177 nominal thousands of unique bytecodes executed
BUF 7 15 7 0 4 29 nominal thousands of unique function calls
GCA 10 133 1 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 4 781 14 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 10 144 1 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 8 16 5 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 7 5 7 0 0 120 nominal percent 10th iteration memory leakage
GMD 9 191 3 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 9 3519 2 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 3 7 16 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 10 269 2 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 7 467 8 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 3 32 15 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 5 179 13 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 6 74 10 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 5 11 13 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 6 74 10 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 3 1 16 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 9 31 4 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 8 19 5 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 7 10 8 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 9 7 4 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 8 112 6 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 10 47 2 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 8 35 5 5 23 41 nominal backend bound (memory)
UBP 5 38 13 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 7 1295 7 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 5 39 12 5 39 137 nominal 1000 x bad speculation
UDC 7 16 8 2 12 27 nominal data cache misses per K instructions
UDT 6 258 9 14 174 576 nominal DTLB misses per M instructions
UIP 2 109 18 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 8 4478 6 335 2645 8506 nominal LLC misses per M instructions
USB 8 40 5 7 29 53 nominal 100 x back end bound
USC 8 155 5 1 52 351 nominal 1000 x SMT contention
USF 5 21 13 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 40. Lower bounds on the overheads [11] for pmd for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 41. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.



Rethinking Java Performance Analysis ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

B.16 Spring
(New) This is a latency-sensitive workload that runs the petclinic workload over the Spring Boot microservices web framework.
DaCapo replaces petclinc’s synthetic load generator with a deterministic request workload. Spring Boot has about 580 K lines
of Java source code. spring is sensitive to memory speed (PMS). It has one of the highest number of unique bytecodess executed
(BUB) and unique function calls (BUF) and is sensitive to choice of compiler (PCS).

Table 18. Complete nominal statistics for spring. Value represents the concrete value for that metric with respect toDescription.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 6 70 9 28 58 211 nominal average object size (bytes)
AOL 10 200 1 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 9 10849 3 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 3 11 14 0 34 2204 nominal aaload per usec
BAS 7 2 7 0 1 126 nominal aastore per usec
BEF 1 2 18 1 4 29 nominal execution focus / dominance of hot code
BGF 4 395 12 0 527 32087 nominal getfield per usec
BPF 5 94 10 0 83 3863 nominal putfield per usec
BUB 9 170 2 1 34 177 nominal thousands of unique bytecodes executed
BUF 9 26 3 0 4 29 nominal thousands of unique function calls
GCA 4 94 14 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 7 2770 7 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 3 83 17 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 8 12 6 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 5 55 13 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 3 65 14 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 7 43 7 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 5 70 13 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 6 397 9 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 8 283 5 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 4 162 15 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 7 110 8 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 5 2 13 1 3 8 nominal execution time (sec)
PFS 3 8 16 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 7 110 8 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 7 7 7 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 5 6 13 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 9 20 4 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 9 36 3 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 4 87 14 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 5 30 11 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 7 28 8 5 23 41 nominal backend bound (memory)
UBP 7 60 7 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 8 1475 6 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 7 61 7 5 39 137 nominal 1000 x bad speculation
UDC 5 13 11 2 12 27 nominal data cache misses per K instructions
UDT 8 392 6 14 174 576 nominal DTLB misses per M instructions
UIP 4 122 15 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 7 4264 8 335 2645 8506 nominal LLC misses per M instructions
USB 6 32 9 7 29 53 nominal 100 x back end bound
USC 7 100 8 1 52 351 nominal 1000 x SMT contention
USF 7 32 8 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 42. Lower bounds on the overheads [11] for spring for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 43. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 44. Distribution of request latencies for spring for each of OpenJDK 21’s six production collectors. The figures in the
left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.
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B.17 Sunflow
This workload uses the Sunflow photorealistic renderer to render a series of images. Sunflow consists of about 25 K lines of
Java code. sunflow has a high allocation rate (ARA), and the highest aaload and getfield rates (BAL, BGF). It is the slow to
warm up (PWU) and has the highest execution variance (PSD). It is the least sensitive to last level cache size (PLS). It is one of
the least front end bound (USF) and one of the most back end bound (USB) and suffers high SMT contention (USC).

Table 19. Complete nominal statistics for sunflow. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 3 40 15 28 58 211 nominal average object size (bytes)
AOL 3 48 15 24 56 200 nominal 90-percentile object size (bytes)
AOM 10 48 1 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 8 10518 4 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 10 2204 1 0 34 2204 nominal aaload per usec
BAS 7 2 7 0 1 126 nominal aastore per usec
BEF 3 3 15 1 4 29 nominal execution focus / dominance of hot code
BGF 10 32087 1 0 527 32087 nominal getfield per usec
BPF 9 3200 2 0 83 3863 nominal putfield per usec
BUB 2 20 16 1 34 177 nominal thousands of unique bytecodes executed
BUF 1 1 18 0 4 29 nominal thousands of unique function calls
GCA 9 113 4 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 10 14139 2 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 9 113 4 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 9 20 4 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 4 29 14 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 5 149 11 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 2 5 18 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 4 31 14 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 9 6329 3 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 9 711 3 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 3 92 17 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 2 14 19 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 7 3 8 1 3 8 nominal execution time (sec)
PFS 7 16 8 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 2 14 19 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 3 1 16 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 0 -2 22 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 4 3 14 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 8 24 5 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 10 13 1 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 8 6 6 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 5 98 11 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 4 19 15 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 9 37 3 5 23 41 nominal backend bound (memory)
UBP 1 21 20 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 8 2380 5 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 1 24 20 5 39 137 nominal 1000 x bad speculation
UDC 3 8 16 2 12 27 nominal data cache misses per K instructions
UDT 3 75 17 14 174 576 nominal DTLB misses per M instructions
UIP 3 114 16 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 4 2333 14 335 2645 8506 nominal LLC misses per M instructions
USB 10 49 2 7 29 53 nominal 100 x back end bound
USC 10 240 2 1 52 351 nominal 1000 x SMT contention
USF 1 5 21 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 45. Lower bounds on the overheads [11] for sunflow for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 46. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.18 Tomcat
This is a latency-sensitive workload that issues requests to the Apache Tomcat web server. Tomcat consists of about 380 K lines
of Java code. Tomcat has the highest parallel efficiency (PPE). It is sensitive to heap size (GSS) and has a high GC turnover
(GTO) and GC count (GCC). It spends a relatively large amount of time in the kernel (PKP), which is unsurprising for a web
server. It is sensitive to compiler choice (PCC, PIN). It has one of the highest data cache, last level cache, and DTLB miss rates
(UDC, ULL, UDT), is front end bound (USF) and has one of the lowest IPCs (UIP).

Table 20. Complete nominal statistics for tomcat. Value represents the concrete value for that metric with respect toDescription.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 7 75 7 28 58 211 nominal average object size (bytes)
AOL 7 80 7 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 6 5290 8 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 3 9 15 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 8 9 5 1 4 29 nominal execution focus / dominance of hot code
BGF 3 272 14 0 527 32087 nominal getfield per usec
BPF 4 75 12 0 83 3863 nominal putfield per usec
BUB 8 118 5 1 34 177 nominal thousands of unique bytecodes executed
BUF 7 16 6 0 4 29 nominal thousands of unique function calls
GCA 5 100 12 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 9 6029 4 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 5 95 13 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 6 8 9 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 6 0 9 0 0 120 nominal percent 10th iteration memory leakage
GMD 2 21 18 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 2 35 16 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 5 13 12 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 2 24 18 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 8 1227 6 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 9 810 2 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 10 465 2 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 8 149 6 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 8 4 6 1 3 8 nominal execution time (sec)
PFS 2 2 18 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 8 149 6 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 9 19 3 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 5 8 12 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 4 2 15 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 10 87 1 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 5 2 13 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 1 14 21 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 2 4 19 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 4 22 14 5 23 41 nominal backend bound (memory)
UBP 6 44 10 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 2 584 19 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 6 45 10 5 39 137 nominal 1000 x bad speculation
UDC 8 18 5 2 12 27 nominal data cache misses per K instructions
UDT 10 519 2 14 174 576 nominal DTLB misses per M instructions
UIP 1 102 20 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 9 5119 4 335 2645 8506 nominal LLC misses per M instructions
USB 4 26 15 7 29 53 nominal 100 x back end bound
USC 5 76 11 1 52 351 nominal 1000 x SMT contention
USF 10 45 2 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 47. Lower bounds on the overheads [11] for tomcat for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 48. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 49. Distribution of request latencies for tomcat for each of OpenJDK 21’s six production collectors. The figures in the
left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.
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B.19 Tradebeans
This is a latency-sensitive workload that executes the DayTrader workload over the Wildfly application server. Wildfly has
about 4.2M lines of Java source code. The DayTrader workload was originally developed by IBM Research to model customer
applications on their production application server [34, 35]. DaCapo replaces the DayTrader synthetic load generator with a
deterministic load. tradebeans is sensitive to compiler configuration (PCS) and memory speed (PMS). It is slow to warm up
(PWU) and has high variance (PSD). It has a minimum heap size of 1.1 GB in its vlarge configuration. It is one of the least back
end bound workloads (USB).

Table 21. Complete nominal statistics for tradebeans. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

GCA 3 87 17 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 5 948 12 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 4 84 15 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 5 2 12 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 9 26 3 0 0 120 nominal percent 10th iteration memory leakage
GMD 7 135 8 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 7 605 7 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 8 73 5 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 6 141 9 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GMV 4 1123 2 371 1123 20641 nominal minimum heap size (MB) for vlarge size configuration (with compressed pointers)
GSS 5 67 13 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
PCC 3 104 16 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 8 150 5 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 7 17 7 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 8 150 5 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 5 2 12 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 8 25 6 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 6 7 9 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 3 4 16 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 9 2 4 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 8 6 6 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 9 144 3 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 9 42 3 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 4 21 15 5 23 41 nominal backend bound (memory)
UBP 5 38 13 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 6 1187 9 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 5 39 12 5 39 137 nominal 1000 x bad speculation
UDC 3 8 16 2 12 27 nominal data cache misses per K instructions
UDT 5 177 11 14 174 576 nominal DTLB misses per M instructions
UIP 7 199 8 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 5 2352 13 335 2645 8506 nominal LLC misses per M instructions
USB 2 23 19 7 29 53 nominal 100 x back end bound
USC 5 42 13 1 52 351 nominal 1000 x SMT contention
USF 8 38 5 4 23 51 nominal 100 x front end bound
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(b) Total CPU overheads (TASK_CLOCK).

Figure 50. Lower bounds on the overheads [11] for tradebeans for each of OpenJDK 21’s six production garbage collectors as
a function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right
shows the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the
total computation overhead.
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Figure 51. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 52. Distribution of request latencies for tradebeans for each of OpenJDK 21’s six production collectors. The figures in
the left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.
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B.20 Tradesoap
This is a latency-sensitive workload that executes the DayTrader workload over the Wildfly application server. It differs from
tradebeans in that it uses the full SOAP protocol to communicate with the server. DaCapo includes the two variants of the
DayTrader workload on the recommendation of the authors of the original work that pointed to the inefficiencies of such web
frameworks [36]. It is sensitive to CPU frequency scaling (PFS) and is the most sensitive to last level cache size (PLS). It has a
high DTLB miss rate (UDT), but is not particularly back end bound (USB, UBM).

Table 22. Complete nominal statistics for tradesoap. Value represents the concrete value for that metric with respect to
Description. Min,Median, andMax are the summary statistics for that metric across all benchmarks. For each metric, the
benchmark obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark
obtains a Rank between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

GCA 5 101 11 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 4 774 15 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 6 100 9 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 8 6 6 0 0 120 nominal percent 10th iteration memory leakage
GMD 5 91 11 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 6 229 9 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 9 75 4 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 5 115 11 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GMV 0 371 3 371 1123 20641 nominal minimum heap size (MB) for vlarge size configuration (with compressed pointers)
GSS 5 284 11 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
PCC 9 400 3 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 7 117 7 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 7 16 8 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 7 117 7 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 5 2 12 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 10 40 1 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 6 6 10 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 5 8 11 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 9 2 4 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 7 5 8 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 10 147 2 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 7 34 8 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 5 23 12 5 23 41 nominal backend bound (memory)
UBP 8 73 6 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 5 1087 12 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 8 74 6 5 39 137 nominal 1000 x bad speculation
UDC 7 17 7 2 12 27 nominal data cache misses per K instructions
UDT 7 385 7 14 174 576 nominal DTLB misses per M instructions
UIP 5 163 11 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 5 2645 12 335 2645 8506 nominal LLC misses per M instructions
USB 4 26 15 7 29 53 nominal 100 x back end bound
USC 5 52 12 1 52 351 nominal 1000 x SMT contention
USF 7 35 7 4 23 51 nominal 100 x front end bound



Rethinking Java Performance Analysis ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

91 182 273 364 455 546
Heap size (MB)

1 2 3 4 5 6
Heap size (× minheap)

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 t
im

e 
ov

er
he

ad
 (L

B
O

)

(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 53. Lower bounds on the overheads [11] for tradesoap for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 54. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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(a) Simple latency, 2.0× heap.
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(b) Simple latency, 6.0× heap.
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(c) Metered latency with 100ms smoothing, 2.0× heap.
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(d)Metered latency with 100ms smoothing, 6.0× heap.
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(e) Metered latency with full smoothing, 2.0× heap.
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(f)Metered latency with full smoothing, 6.0× heap.

Figure 55. Distribution of request latencies for tradesoap for each of OpenJDK 21’s six production collectors. The figures in
the left top row simply plot the request latencies, while the figures in the middle and the bottom rows use DaCapo’s metered
latency, which models a request queue and the cascading effect of delays.
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B.21 Xalan
This workload uses the Apache Xalan XSLT processor to transform a set of documents. xalan is the workload most sensitive to
heap size (GSS, GCA, GCC, GCM, GCP, GTO). It has a high allocation rate (ARA), and very high aastore, aaload, putfield, and
getfield rates (BAS, BAL, BPF, BGF). It is very insensitive to compiler configuration (PCC, PCS, PIN). It has one of the worst
data cache miss rates (UDC), and one of the lowest IPCs (UIP).

Table 23. Complete nominal statistics for xalan. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 8 107 5 28 58 211 nominal average object size (bytes)
AOL 3 48 15 24 56 200 nominal 90-percentile object size (bytes)
AOM 3 24 14 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 7 6682 6 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 9 294 3 0 34 2204 nominal aaload per usec
BAS 9 90 2 0 1 126 nominal aastore per usec
BEF 5 4 11 1 4 29 nominal execution focus / dominance of hot code
BGF 8 6389 4 0 527 32087 nominal getfield per usec
BPF 9 807 3 0 83 3863 nominal putfield per usec
BUB 3 21 15 1 34 177 nominal thousands of unique bytecodes executed
BUF 3 2 15 0 4 29 nominal thousands of unique function calls
GCA 9 114 3 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 9 13484 3 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 9 114 3 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 10 78 1 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 8 7 5 0 0 120 nominal percent 10th iteration memory leakage
GMD 1 13 20 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GML 0 13 20 13 149 10201 nominal minimum heap size (MB) for large size configuration (with compressed pointers)
GMS 2 5 18 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 1 17 20 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 10 7638 1 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 8 285 4 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 0 0 22 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 1 13 20 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 5 12 12 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 1 13 20 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 9 14 4 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 7 19 8 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 5 4 13 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 5 6 12 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 7 1 7 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 1 1 20 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 6 101 10 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 3 13 17 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 7 29 7 5 23 41 nominal backend bound (memory)
UBP 5 39 12 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 4 785 15 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 5 39 12 5 39 137 nominal 1000 x bad speculation
UDC 9 20 4 2 12 27 nominal data cache misses per K instructions
UDT 8 441 5 14 174 576 nominal DTLB misses per M instructions
UIP 1 98 21 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 8 5045 5 335 2645 8506 nominal LLC misses per M instructions
USB 7 34 8 7 29 53 nominal 100 x back end bound
USC 6 97 9 1 52 351 nominal 1000 x SMT contention
USF 8 36 6 4 23 51 nominal 100 x front end bound
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(a)Wall clock.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 56. Lower bounds on the overheads [11] for xalan for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 57. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.
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B.22 Zxing
(New) This workload uses the ZXing9 barcode reader to read a series of 1D and 2D barcodes. ZXing has about 48 K lines of
Java source code. zxing has one of the highest parallel efficiency among the workloads (PPE). It is one of the slowest to warm
up (PWU), has one of the largest average and median object sizes (AOA, AOM) and is one of the least sensitive to garbage
collection (GCA, GCC, GCM, GCP). It has the highest SMT contention (USC), is among the least back end bound (USB), and
has among the lowest data cache, last level cache, and DTLB miss rates (UDC, ULL, UDT).

Table 24. Complete nominal statistics for zxing. Value represents the concrete value for that metric with respect to Description.
Min, Median, and Max are the summary statistics for that metric across all benchmarks. For each metric, the benchmark
obtains a Score between 0 and 10 (10 being the largest concrete value for that metric). Similarly, the benchmark obtains a Rank
between 1 and the number of benchmarks having that metric (1 being the largest).

Metric Score Value Rank Min Median Max Description

AOA 9 115 3 28 58 211 nominal average object size (bytes)
AOL 7 80 7 24 56 200 nominal 90-percentile object size (bytes)
AOM 9 32 2 24 32 48 nominal median object size (bytes)
AOS 10 24 1 16 24 24 nominal 10-percentile object size (bytes)
ARA 5 2097 11 54 2097 23556 nominal allocation rate (bytes / usec)
BAL 7 129 7 0 34 2204 nominal aaload per usec
BAS 4 0 13 0 1 126 nominal aastore per usec
BEF 8 11 4 1 4 29 nominal execution focus / dominance of hot code
BGF 8 6226 5 0 527 32087 nominal getfield per usec
BPF 2 31 16 0 83 3863 nominal putfield per usec
BUB 6 55 9 1 34 177 nominal thousands of unique bytecodes executed
BUF 5 4 10 0 4 29 nominal thousands of unique function calls
GCA 0 16 22 16 100 133 nominal average post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCC 1 58 21 31 948 22408 nominal GC count at 2X heap size (G1)
GCM 0 14 22 14 98 144 nominal median post-GC heap size as percent of min heap, when run at 2X min heap with G1
GCP 4 1 15 0 2 78 nominal percentage of time spent in GC pauses at 2X heap size (G1)
GLK 10 120 1 0 0 120 nominal percent 10th iteration memory leakage
GMD 9 183 4 5 72 681 nominal minimum heap size (MB) for default size configuration (with compressed pointers)
GMS 2 5 18 5 13 157 nominal minimum heap size (MB) for small size configuration (with compressed pointers)
GMU 6 127 10 7 73 903 nominal minimum heap size (MB) for default size without compressed pointers
GSS 1 6 20 0 249 7638 nominal heap size sensitivity (slowdown with tight heap, as a percentage)
GTO 1 7 19 3 52 1211 nominal memory turnover (total alloc bytes / min heap bytes)
PCC 8 277 6 0 201 1083 nominal percentage slowdown due to aggressive c2 compilation compared to baseline (compiler cost)
PCS 5 64 11 1 61 323 nominal percentage slowdown due to worst compiler configuration compared to best (sensitivty to

compiler)
PET 3 1 17 1 3 8 nominal execution time (sec)
PFS 0 -1 22 -1 12 20 nominal percentage speedup due to enabling frequency scaling (CPU frequency sensitivity)
PIN 5 64 11 1 61 323 nominal percentage slowdown due to using the interpreter (sensitivty to interpreter)
PKP 6 5 10 0 2 56 nominal percentage of time spent in kernel mode (as percentage of user plus kernel time)
PLS 6 18 10 -2 8 40 nominal percentage slowdown due to 1/16 reduction of LLC capacity (LLC sensitivity)
PMS 10 46 1 0 5 46 nominal percentage slowdown due to slower memory (memory speed sensitivity)
PPE 10 63 2 3 6 87 nominal parallel efficiency (speedup as percentage of ideal speedup for 32 threads)
PSD 3 0 16 0 1 13 nominal standard deviation among invocations at peak performance (as percentage of performance)
PWU 9 7 4 1 3 9 nominal iterations to warm up to within 1.5 % of best
UAA 3 77 17 2 92 168 nominal percentage change (slowdown) when running on ARM Neoverse N1 (Ampere Altra Q80-30) v

AMD Zen 4 (Ryzen 9 7950X) on a single core (taskset 0)
UAI 9 42 3 -19 25 56 nominal percentage change (slowdown) when running on Intel Golden Cove (i9-12900KF) v AMD Zen 4

(Ryzen 9 7950X) on a single core (taskset 0)
UBM 0 5 22 5 23 41 nominal backend bound (memory)
UBP 7 52 8 5 39 134 nominal 1000 x bad speculation: mispredicts
UBR 1 374 21 164 1087 3487 nominal 1000000 x bad speculation: pipeline restarts
UBS 6 52 9 5 39 137 nominal 1000 x bad speculation
UDC 1 3 20 2 12 27 nominal data cache misses per K instructions
UDT 0 14 22 14 174 576 nominal DTLB misses per M instructions
UIP 8 211 6 89 149 476 nominal 100 x instructions per cycle (IPC)
ULL 0 335 22 335 2645 8506 nominal LLC misses per M instructions
USB 0 7 22 7 29 53 nominal 100 x back end bound
USC 10 351 1 1 52 351 nominal 1000 x SMT contention
USF 4 18 15 4 23 51 nominal 100 x front end bound

9Pronounced zebra crossing.
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(b) Total CPU overheads (TASK_CLOCK).

Figure 58. Lower bounds on the overheads [11] for zxing for each of OpenJDK 21’s six production garbage collectors as a
function of heap size. The figure on the left shows the overhead in terms of wall clock time while the figure on the right shows
the overhead using the Linux perf TASK_CLOCK, which sums the running time of all threads in the process, giving the total
computation overhead.
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Figure 59. Heap size post each garbage collection, with the time relative to the start of the last benchmark iteration. The
benchmark is running with OpenJDK 21’s G1 collector at 2.0× heap.


	Abstract
	1 Introduction
	2 Motivation
	3 Background and Related Work
	3.1 Modern Virtual Machines and OpenJDK 21
	3.2 Benchmarks and Benchmark Suites
	3.3 Empirical Evaluation

	4 Methodology
	4.1 Methodological Principles
	4.2 The Time–Space Tradeoff
	4.3 Compilers, Warmup and Performance Analysis
	4.4 User-Experienced Latency
	4.5 Lower Bound Garbage Collection Overheads

	5 DaCapo Chopin Benchmarks
	5.1 Nominal Statistics
	5.2 Principal Component Analysis

	6 Analysis
	6.1 Methodology
	6.2 Lower Bound Overheads
	6.3 User-Experienced Latency
	6.4 Architectural Sensitivity

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Installation
	A.5 Basic Test
	A.6 Experiment Workflow
	A.7 Evaluation and Expected Results
	A.8 Experiment Customization
	A.9 Methodology

	B Appendix: Benchmark Descriptions and Statistics
	B.1 Avrora
	B.2 Batik
	B.3 Biojava
	B.4 Cassandra
	B.5 Eclipse
	B.6 Fop
	B.7 Graphchi
	B.8 H2
	B.9 H2o
	B.10 Jme

	B.11 Jython
	B.12 Kafka
	B.13 Luindex
	B.14 Lusearch
	B.15 Pmd
	B.16 Spring
	B.17 Sunflow
	B.18 Tomcat
	B.19 Tradebeans
	B.20 Tradesoap
	B.21 Xalan
	B.22 Zxing

