Iso: Request-Private Garbage Collection

TIANLE QIU, Australian National University, Australia
STEPHEN M. BLACKBURN, Google, Australia and Australian National University, Australia

Large-scale, revenue-critical application services are often written in Java or other memory-safe languages
whose type systems do not expose immutable state. Such applications are especially exposed to garbage
collection performance overheads because latency, throughput, and memory consumption are first-order
concerns for service providers. We observe that: i) An important class of server applications are request-based:
they scale by concurrently servicing large numbers of quasi-independent requests. ii) Object lifetimes are
strongly tied to request lifetimes. iii) Most objects remain private to the request in which they were allocated.
iv) Global operations are the primary impediment to responsiveness at scale.

If we could perform request-private garbage collection, we might achieve both responsiveness and efficiency
at scale. Unfortunately, this straightforward insight runs into significant practical problems. The most obvious
of these is that a request-private collection cannot safely move objects that may be referenced outside the scope
of that request, and yet moving objects is a requirement of most modern high performance collector designs.
This dilemma can be sidestepped by exploiting immutability, which is unfortunately not practical in languages
like Java whose type systems do not expose it. We develop Iso, a garbage collector for request-based services
that exploits a mark-region heap structure to solve these impediments and deliver outstanding performance.

The key contributions of this paper are that: i) We use opportunistic copying to solve the problem of
practical thread-local garbage collection for languages without exploitable immutability. ii) We provide the
first detailed analysis of the behavior of Java workloads with respect to thread-local collection, identify
shortcomings of existing benchmarks and introduce a new one. iii) We design, implement, and evaluate Iso, a
practical and effective request-private GC. We show that dynamic tracking of object visibility, a prerequisite for
request-private GC, incurs an overhead of just 2% for important request-based workloads including Tomcat and
Spring. Iso demonstrates that for suitable workloads, request-based garbage collection is extremely effective,
outperforming OpenJDK with its default collector, G1, by 32% and 22% in execution time in a modest heap.
This work presents the first request-private garbage collector for Java. It shows a promising way forward for
highly responsive collection on an important class of large scale workloads.

CCS Concepts: « Software and its engineering — Garbage collection; Software performance.
Additional Key Words and Phrases: Garbage Collection, Thread-Local Garbage Collection

ACM Reference Format:
Tianle Qiu and Stephen M. Blackburn. 2025. Iso: Request-Private Garbage Collection. Proc. ACM Program.
Lang. 9, PLDI, Article 182 (June 2025), 23 pages. https://doi.org/10.1145/3729285

1 Introduction

Garbage collection is far from a solved problem [12]. The pursuit of application responsiveness
at scale has led to production collector designs over the past decade that trade performance for
responsiveness. Collectors face two independent challenges: i) identifying and reclaiming garbage
in heaps with large live object graphs is expensive, and ii) collecting garbage without blocking the
application is intrinsically expensive. These challenges grow as the scale of the applications grow.

Authors’ Contact Information: Tianle Qiu, Australian National University, Canberra, Australia, tianle.qiu@anu.edu.au;
Stephen M. Blackburn, Google, Sydney, Australia and Australian National University, Canberra, Australia, steveblackburn@
google.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART182

https://doi.org/10.1145/3729285

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0006-6534-9176
HTTPS://ORCID.ORG/0000-0001-6632-6001
https://doi.org/10.1145/3729285
https://orcid.org/0009-0006-6534-9176
https://orcid.org/0000-0001-6632-6001
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729285

182:2 Tianle Qiu and Stephen M. Blackburn

Heap Volume (MB)
P S
Numberof Objects (K)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 1
Time (MB of allocation)

5 62 211 529 742 971 1373 1492 1723 2124 2353 2552 2877 3089 3406 3624

Time in KB of allocation

(a) Heap composition: SPECjvm98 javac [8]. (b) Heap composition: PHP wordpress [34].

Fig. 1. Well-timed garbage collection can have near-zero cost. Heap composition graphs taken from
prior work [8, 34], with the top-most line in each graph indicating total heap occupancy (annotated in blue).
In each case, the total heap occupancy periodically falls to zero. On the javac benchmark, if collections are
timed to occur at exactly 44 MB, 88 MB and 132 MB, there will be almost no objects live during each collection,
so the collections will have near-zero cost. The same occurs in wordpress and other PHP workloads [34].

Application servers typically run many largely-independent requests which scale well because they
are embarrassingly parallel, but they expose garbage collection as a major bottleneck.

In this work, we exploit the fact that many services execute individual requests as quasi-
independent, mostly-isolated tasks. This observation allows us to directly address both of the
challenges above: i) at the end of a request, the request’s object graph will be small or completely
empty, making collection cheap, and ii) when a computation is isolated, its heap can be collected
independently, and if performed between requests, the collection will not impact executing requests.

The first of these observations has been understood for decades [53, 54] but not widely exploited.
This is illustrated by the javac benchmark, which was regarded as one of the most interesting and
GC-intensive benchmarks in the SPECjvm98 suite. The benchmark has a quirk: if the heap is sized
just right, then the cost of GC plummets unexpectedly to near zero. If the heap is made slightly
smaller or slightly larger, the GC cost will return to a significant level. Figure 1(a) illustrates why.
The figure shows a heap composition graph depicting object liveness in MB as a function of time,
broken down into bands of allocation cohorts.!? The benchmark has four prominent phases, at the
end of each of which the heap has almost no live objects. Since the cost of a tracing collector is
dominated by a trace of live objects, collecting at the end of each of the phases of this benchmark
is very inexpensive, so a luckily-sized heap can lead to collections that align perfectly with these
phases, yielding a near-zero GC overhead. Figure 1(b) shows the same for a series of requests in
the PHP wordpress workload, suggesting similar opportunities for substantial savings [34].

Unfortunately, this straightforward observation falls down in the face of concurrency. If two or
more threads simultaneously and independently run workloads with profiles like those in Figure 1,
the opportunity for cheap collection would only exist as long as those threads’ phases were perfectly
synchronized. In practice this is intractable on multithreaded Java servers so the opportunity to
collect between such phases is lost. The situation can be recovered if each thread works in isolation,
collecting between its requests, regardless of when other threads might collect.

The idea of thread-local collection is also decades old [19]. However, until now, it has not
been practical in a language like Java despite prior effort [20]. The difficulty lies in how to detect
and respond to cases where thread-local isolation is violated [18, 19]. The key idea introduced
by Doligez and Leroy [19] is to maintain an invariant of privacy for a thread-local heap. If a

The authors of [8] and [34] follow the convention of measuring time in allocated bytes rather than wall clock time.
2Allocation cohorts allow the lifetimes of contemporaneously allocated objects to be tracked, which is not relevant here.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:3

thread is about to make a private object public, it must first make the transitive closure of that
object public. Unfortunately, this either involves moving the object and its transitive closure [2]
or leaving the object in situ [20]. Moving the object and its transitive closure is expensive since
maintaining referential integrity either requires a full thread-local collection every time an object
is published [2] or indirection through forwarding pointers [30]. Potentially collecting at every
pointer store is expensive not just because of the cost of frequently tracing the entire private heap,
but because it requires that the compiler make every pointer store a GC safe point, which introduces
direct overheads and reduces optimization opportunities. On the other hand, leaving the objects
in place also appears to be expensive since it suggests that a non-moving heap is required [20],
which sacrifices locality [32]. Languages whose type system exposes immutability can sidestep this
dilemma by copying immutable objects [39], but this is not an option in Java. Consequently, the
idea of thread-local collection has been elusive for Java.

This paper demonstrates Iso, the first practical request-local garbage collector for Java, and shows
how it can dramatically improve performance for application servers that process isolated requests.
A key insight is to exploit the idea of opportunistic copying offered by mark-region heaps [9, 15].
Opportunistic copying allows the moving of objects when convenient and leaving them in place
when it is not, giving us the best of both worlds: a fast copying garbage collector that does not
require prohibitively expensive evacuation upon publication.

The contributions of this paper are as follows: i) We develop and evaluate Iso, the first practical
request-local garbage collector for Java. ii) We show that opportunistic copying is the key to
performant thread-local garbage collection in languages like Java where immutability is uncommon.
iii) We demonstrate that request-local collection can dramatically improve the performance of
workloads that service isolated requests. iv) We provide the first detailed analysis of the behavior
of such workloads, identify shortcomings of existing benchmarks and introduce a new one.

2 Background and Related Work
2.1 Arenas, Regions, and Request-Based Workloads

The observation that program behavior may result in groups of objects dying together, and that this
provides an opportunity for efficient memory management has been around since the 1960s [44].
One realization of this insight is to allocate objects into regions of memory, which Hanson [31]
called arenas, and free the entire arena once all objects are unreachable. Variations of this general
idea have been built into programming language implementations including Cyclone [29] and ML
Kit [1]. Generalizations of the idea include hierarchical relations among regions and combining on
masse reclamation supported by regions with the per-object reclamation supported by a heap [23].
The lifetime requirements of region-based approaches make them awkward in general-purpose
memory-safe object-oriented languages, but they are used in Java in the special cases of real-time
memory management [11] and managing native memory [13].

Lieberman and Hewitt [38] note that the height of a program’s activation stack offers a clue as
to how many objects might be live, and thus an opportunity for cheap garbage collection through
careful timing. Wilson and Moher [54] take the idea further, noting that certain points in a program
might be more opportune than others, such as when a text editor was idle, and suggested providing
hints to the collector. Jibaja et al. [34] note that PHP’s request-based workloads exhibit distinct
phases with heap occupancy falling to near-zero between requests (Figure 1(b)). Unfortunately this
observation can’t be exploited with traditional (global) garbage collection techniques if the service
is multithreaded and requests are unsynchronized, since the good time to collect one thread will in
general not coincide with the good time to collect another. Degenbaev et al. [15] note that some
applications have regular idle time, which allows collections to be scheduled without affecting the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:4 Tianle Qiu and Stephen M. Blackburn

user experience. They implemented this in the V8 runtime where their application is a browser
with a renderer loop that requires frames to be drawn at a given frequency. If there is slack time
available before the next frame needs to be drawn, they can perform a collection without affecting
the frame rate. Hudson and Clements [33] observe that in the Go language, goroutines provide
nice lifetime hints and that thread-local garbage collection might allow for efficient collection of
objects allocated during a goroutine. As far as we can tell this idea was never implemented.

We build on this prior work in the specific domain of request-based applications, where we
know when requests start and end. We make similar observations to Jibaja et al. [34], but with
large multi-threaded Java application services. We address the confounding problem of concurrent
requests by developing practical thread-local collection for Java.

2.2 Thread-Local Garbage Collection

The Doligez-Leroy-Gonthier (DLG) parallel collector is structured in terms of a ‘global” heap and
a number of ‘thread-local” heaps [18, 19]. Their design maintains the invariant that objects in a
local heap can only be externally referenced by the stack of the thread that owns the heap. We call
this the DLG invariant. In this work, we generalize and use the term ‘heap’ with respect to
logical heaps whose contents may not necessarily be contiguous. The invariant allows each local
heap to be collected independently, without synchronization among threads. Since Doligez and
Leroy’s work, there have been many collector designs based on or extending this key idea [2-
4, 20, 30, 35, 39, 46, 51, 52]. One straightforward generalization of the idea is that multiple related
threads can be associated with each local heap. This is known as task-local garbage collection.

Terminology. We note that the principal concern is one of visibility, not spatial proximity. In fact
the key ideas are largely orthogonal to proximity [20, 39]. For this reason, throughout the paper
we use terminology of private, public, and publication, in place of local, global, and globalization.

Maintaining the DLG Invariant. The DLG invariant can be maintained statically or dynamically.
If thread-private objects can be precisely identified statically, then it is sufficient for such objects
to be placed into the correct thread-private heap at allocation time [35, 46]. More generally, the
invariant can be maintained dynamically by intercepting the publication of thread-private objects.
Publication occurs at the moment a pointer to a private object is installed within a public object or
a public root. An important corollary of the DLG invariant is that the publishing thread can only
ever be the thread that allocated the object, since by definition only the allocating thread is aware
of the private object. This eliminates the possibility that publication could occur due to the action
of another thread. The DLG invariant can be maintained by the owning thread transferring the
to-be-published object and its transitive closure to the public heap immediately before installing
the pointer that would affect publication. A write barrier can be used to maintain the invariant by
checking for any pointer store where the source is public and the destination is private.

There are three ways to maintain the DLG invariant when an object o is about to be published.
i) o can be moved. This requires a costly full trace of the entire private heap at each publication
event to update all pointers to o and those transitively moved with o [2], or indirection through
forwarding pointers [30]. The former also requires that the compiler make each pointer store a
GC safe point. ii) A copy of o, 0’, can be made in the public heap if o0 is immutable. This avoids the
need to move o. iii) The private heap can be delineated logically rather than spatially via per-object
metadata such as a bitmap. This only requires a transitive closure of the object being published,
rather than a trace of the entire private heap [20]. Since, by definition each object can only be
published once, the amortized cost of performing this closure in the write barrier is constant time.

In this work we use a per-object ‘public’ bit and a write barrier to maintain the DLG invariant,
allowing us to track object privacy independently of heap structure and GC strategy. This separation

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:5

of concerns allows us to explore a range of design points. For example, straightforwardly combining
privacy tracking with a classic mark-sweep collector design leads to Domani et al.’s approach [20],
while combining it with a classic copying collector leads to Anderson’s approach [2].

Weakening the DLG Invariant. Marlow and Peyton Jones [39] note that the DLG invariant’s
requirement to eagerly publish all objects transitively reachable from a published object is ex-
pensive, leading them to a more lazy approach. They move just the published object, and put in
place read barriers to identify when references from it to its children are read by another thread.
When the read barrier triggers, the triggering thread makes a blocking request to the owner of the
private object for it to publish the referenced object. Although read barriers are often costly, GHC
already uses a read-barrier, making the marginal cost of this design low. Marlow and Peyton Jones
selectively apply this strategy to immutable objects, so publication consists of making a copy in the
public heap. They handle mutable objects with a non-moving strategy in the style of Domani et al.
[20]. This weakening of the invariant through read barriers is also used by Dolan et al. [17] and
Filatov and Mikheev [25]. We avoid this approach because of the cost of read barriers in Java [58]
and the inter-thread synchronization it introduces.

We will now describe thread-local collection in terms of the three key components of garbage
collection: allocation, identification, and reclamation.

Allocation. Each thread allocates objects into its own (logical) private heap. The allocator may
preemptively allocate some objects into the public heap if it knows at allocation time that they will
become public [35, 46]. Generally a bump allocator is used for speed and locality, but Domani et al.
use a free list and a single physical heap with a bitmap identifying whether objects are private or
public in their non-moving design [20]. Marlow and Peyton Jones [39] do the same for mutable
objects in their hybrid design, while using a bump allocator for immutable objects.

Identification. Because the DLG invariant guarantees that thread-private objects are only reach-
able from the owning thread’s stack, it is sufficient to determine liveness of thread-private objects
by pausing the owning thread and, starting with its stack, perform a mark through its local heap.
All pointers extending out of the private heap can be ignored during the mark. At the completion
of the thread-private mark, space within the private heap occupied by unmarked objects can be
reclaimed. Private collections do not need to be coordinated, so various heuristics can be used for
scheduling them. Identification is performed separately for the public heap, and must include the
private heaps since the DLG invariant does not prevent private objects referencing public objects.

Reclamation. Private collections are free to use any of the conventional reclamation strategies
found in the literature [9, 24, 40, 47]. Reclamation by evacuation, as used in the semi-space algorithm,
is simple and fast [24]. It subsumes the need for a separate mark: each object encountered during a
transitive closure over the reachable objects within the thread-private heap (from-space) is copied
(evacuated) to a new area (to-space), with forwarding pointers used to ensure that each object is
only copied once and all references to the object are redirected to the copy. In the case that the
public and private heaps are spatially disjoint [2], at the end of the trace, the private from-space
can be completely reclaimed, and to-space becomes the new thread-private heap. When private
and public objects are spatially intermingled, the from-space may be punctuated by public objects
not considered by the private collection. The gaps between surviving public objects can be made
available for reuse either by a free list or a system such as Immix’s line recycling [9]. The principal
downside of evacuation in any collector is the need to reserve a to-space as large as the from-space
in order to ensure that collection can succeed in the worst case that all objects survive. This is
significantly mitigated in the case of private collection since if private collections do not overlap, it

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:6 Tianle Qiu and Stephen M. Blackburn

is sufficient to reserve one copy space to service all private heaps. Domani et al. and Marlow and
Peyton Jones use mark-sweep [40] for their non-moving private objects [20, 39].

Major Implementations. The major implementations of thread-local garbage collection have been
in functional languages where the type system exposes immutability. We describe the Haskell
implementation above [39], and mention the OCaml implementation [17]. Sivaramakrishnan et al.
[45] later reflect on the OCaml implementation: One surprising result we will justify in our evaluation
is that the stop-the-world minor collector outperforms the concurrent [thread-local] minor collector
in almost all circumstances, even as we cranked up the number of cores. Guatto et al. [30] introduce
a hierarchical relationship between heaps, which maps well to their parallel ML implementation
and presents an interesting variation on the classic DLG invariant: objects may reference objects
in ancestor heaps safely. They use the term ‘entanglement’ to describe references that would
violate the inter-heap invariant. The collector performs evacuation on publication, but avoids the
prohibitive overhead of Anderson’s approach by using forwarding pointers rather than requiring
a full thread-local collection at each object publication. Westrick et al. [52] describe the time and
space overheads of their dynamic invariant check as less than 5% on average. Arora et al. [3] loosen
restrictions on mutation made by prior work, allowing functional programs “to use mutation at
will” The key to their approach is to track ambiguous pointers [10], and by doing so, conservatively
ensure that public objects are not moved during local collections.

Java Implementations. We know of only three implementations of thread-local garbage collection
for Java. Domani et al. [20] implemented a non-moving thread-local collector in an early IBM JDK.
As far as we know this collector has not been put to use, presumably because of it being limited to
non-moving runtimes. Jones and King [35] describe a static analysis for identifying thread-private
objects, but not a working collector. Filatov and Mikheev [25] propose an implementation that
uses read barriers to maintain the DLG invariant, but their work is limited to an evaluation of
publication rates on select JDK8 workloads and does not describe a working implementation.

2.3 Mark-Region Heaps and Opportunistic Copying

Evacuating collectors are dominant among production systems today [16, 22, 26, 48]. They allocate
using a bump pointer and have good locality but can only free memory once a region (such as
a semi-space) has been completely emptied, with all live objects evacuated into another space,
and they must set aside space in which to copy at each collection. At the other extreme, non-
moving collectors are uncommon. They rely on free lists for allocation, which are more exposed
to fragmentation and lead to worse locality. A mark-region heap [9] extracts elements of both
design points, breaking the heap into fine- and coarse-grained lines and blocks, correspondingly
roughly to a cache line and operating system page in size. At the end of each collection, a mark
region collector sweeps its blocks. Any completely free block can be returned to the operating
system. Contiguous free lines can be reused by the allocator’s bump pointer. This design delivers
the locality benefits of copying collectors without the same space overhead or the requirement that
all live objects in the target region must move. Existing mark-region designs include Immix [9], the
V8 garbage collector [15], and LXR [60].

The mark-region design means that at collection time, unlike in strictly-evacuating collectors,
the collector may move any object, but is not required to move any object. This gives the collector
the liberty to decide whether to move each live object, without affecting correctness. This feature is
known as opportunistic copying. Iso uses opportunistic copying to pin public objects during private
collections, and pin private objects during global collections, solving the dilemma of having to
choose between fully moving [2] and non-moving [20] thread-local collector designs while being
unable to exploit immutability.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:7

2.4 lIsolates

Isolates are a longstanding idea for efficiently creating independent virtual machine instances
within a single process. The approach uses copy-on-write to maximize reuse and minimize startup
while maintaining isolation [5, 42]. Although proposed early on as an extension to Java [41], it
did not see widespread adoption, possibly because of the performance overheads and possibly
because of soft demand for such services twenty years ago. More recently, isolates have made a
reappearance in Java through the Graal Native Image VM [55, 56]. This implementation leverages
a closed world assumption to compile the entire application ahead of time, and as a consequence
sidesteps some of the overheads associated with early isolates implementations. The V8 JavaScript
runtime implements isolates [49], which are widely used for serverless function execution, such
as Cloudflare’s Workers [14]. Isolates provide an excellent solution for certain application classes,
however they maintain total isolation among tasks, which for many applications is problematic. In
the case of Java, the requirement of a closed world assumption will also be problematic for some
applications. As we discuss later (Table 1), all of the request-based workloads we explore here
share state among requests, either through non-zero publication or in the case of lusearch, through
intra-thread transfer of state.

2.5 Other Collector Designs

Open]DK’s default G1 garbage collector [16] performs tracing concurrently and copying in
stop-the-world pauses. While it performs well as a general-purpose collector, it suffers from poor
worst-case pauses, so is problematic in latency-sensitive applications, particularly when the live
object graph is very large. The C4 [48], Shenandoah [26, 36] and ZGC [22] collectors were all
designed to address this shortcoming and all build upon the region-based design G1 uses by adding
concurrent copying, each using slightly different approaches [59]. However, concurrent copying
is intrinsically expensive, so all three designs only achieve excellent responsiveness by making
significant compromises with respect to memory footprint and/or CPU overhead [12]. LXR is a
general purpose collector that addresses responsiveness by using reference counting rather than
concurrent copying, outperforming G1 on both throughput and responsiveness, particularly in
tighter heaps [60]. None of these designs exploit request lifetimes or perform thread-local collection.
The design of Iso is largely orthogonal to these existing designs — Iso will very efficiently collect
thread-private objects, falling back to another collector for public objects. For pragmatic reasons,
our current implementation of Iso falls back to Immix, but in principle it could fall back to a
high-performance general-purpose mark-region collector like V8’s collector [15] or LXR [60].

3 Request-Private Garbage Collection

Before we introduce the design of Iso, we introduce request-local garbage collection, which combines
two simple ideas: i) isolation of thread-private objects to enable thread-local collection [18, 19],
which avoids costly global pauses, and ii) timing of collections to exploit systematic ebbs in heap
occupancy (Figure 1), either via heuristics [38, 54] or by callbacks at request boundaries.
Returning to the example of the Wordpress PHP service depicted in Figure 1(b), if the server
were single threaded, the heap could be collected very efficiently by any stop-the-world tracing
collector simply by timing collections to coincide with requests. This could be achieved either
via heuristics [38, 54], or via a callback attached to request completion. But if the server were
multi-threaded, this simple approach becomes useless unless requests were somehow synchronized.
However, if each thread were largely independent, thread-local GC could be used to independently
collect each server thread’s heap. Just as careful timing can dramatically reduce overheads for
regular GC, it can be used to the same effect to carefully time thread-local GC. Note that not

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:8 Tianle Qiu and Stephen M. Blackburn

only will well-timed thread-local collections be efficient, but with sufficient server parallelism, the
collections will not be on any request’s critical path, masking the cost of such GCs completely.

Thread Privacy Requirements. An application that exhibits little thread-private behavior cannot
benefit from thread-local collection. We explore this property with respect to Java workloads
in Section 5.3 and Section 6.2. Table 1 shows that publication rates among DaCapo benchmarks
range from zero (sunflow) to 68% (h2). Note that it seems unlikely that any of these workloads
were (consciously) designed for thread-local collection, since thread-local collection has not been
practical for Java until now. Even so, the level of thread-privacy among them is encouraging.

Lifetime Requirements. The utility of request-private collection depends on the lifetimes of
request-local objects coinciding with request boundaries (see Figure 1(b)). If most data allocated
within a request lives beyond the request, then there is little benefit in collecting at the end of a
request. On the other hand, if most data allocated within a request is private to the request and
dies at the end of the request, a request-private collection should be highly profitable. This in turn
depends on the collector knowing when a request has completed. Prior work suggested using
heuristics to detect such events [38, 54]. We note that modern application frameworks such as Spring,
Kafka, Lucene, Cassandra, and Tomcat provide their users with higher level abstractions, allowing
callbacks to be incorporated with minimal change into the underlying framework, with no change to
applications built on the frameworks. In this work, we leverage the fact that the DaCapo benchmark
suite has built-in callbacks, Callback.requestStart() and Callback.requestEnd(), which we use to
trigger request-local collections [6]. If such callbacks are not available, the request-private collector
reduces to a thread-local collector, falling back to whatever collection triggers the thread-local
collector has in place. For example, we found that in practice, lusearch, which is composed of many
very small requests, exhibits excellent performance with Iso, even without using callbacks.

Generalizing to Multi-Threaded Requests. Request-private GC can be straightforwardly generalized
to the case where requests are internally multi-threaded. In the simplest case, intra-request threads
remain largely thread-private and all that is needed is that the end of request callback (or heuristic)
is shared among all threads participating in the request, and each thread collects their heap
independently. This will work well when the design of the server is such that only minimal state is
shared (published) among the intra-request threads. Beyond this simple case, we can generalize
thread-local GC to allow groups of threads, such as intra-request threads, to share state without
publication. In practice this generalization only requires that it be possible for threads to be passed
shared group-private state when they are created. With that in place, maintaining the invariant
that no public object points to a private object continues to work, unchanged. In practice, we found
that all of the request-based workloads in the DaCapo suite are internally single threaded, so we
have not yet had a reason to implement support for requests that are internally multi-threaded.

4 lIso’s Design

At the high level, Iso’s algorithm is fairly simple. Each object is assigned a public bit which the
runtime maintains dynamically to respect the DLG invariant that no public pointer refer to a private
object. Iso allocates objects into 32 KB blocks owned by the thread allocating the object. Objects
larger than half a block are handled separately, in the large object space (LOS). Iso is distinctive
in that while it maintains the DLG invariant, it also allows private and public objects to co-reside
spatially within a block. These are mixed blocks, in contrast to private and public blocks which
contain only private and public objects respectively. Iso maintains a second key invariant, which
we call the Block invariant: A block may not contain private objects owned by more than one thread.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:9

1 void checkDLG(Object src, Object tgt) {

2 if (!isPublic(src)) {

3 return;

4 }

5 if (tgt == NULL || isPublic(tgt)) {

6 return;

7 3

8 publish(tgt);

9 3

Listing 1. Pseudo-code for the write barrier we use to maintain the DLG invariant. It first checks
whether the source object is public. If not, then the pointer store cannot be affecting a publication. It then
checks whether the target is NULL or already public, in which case there’s no work to be done. Otherwise the
target must be published, which requires setting its public bit and, transitively, those of its children.

Consequently, the set of blocks owned by a thread, i.e. its local heap, may contain public objects
but can never contain objects private to another thread.

Periodically, each thread will perform a collection over its local heap, reclaiming space due to
unreachable private objects, defragmenting by opportunistically moving reachable private objects,
and leaving public objects in place. Occasionally Iso will perform a global collection, reclaiming
space due to unreachable objects (public and private), defragmenting by opportunistically moving
reachable public objects, and leaving reachable private objects in place.

Iso is built within the most recent version of MMTk [7], which is a high performance Rust-based
garbage collection framework with bindings to a number of modern runtimes including Open]DK,
Julia and Ruby. MMTk includes an Immix [9] implementation which we use as the basis for Iso.

4.1 Maintaining the DLG Invariant

Iso maintains the DLG invariant dynamically, using the write barrier illustrated in Listing 1.
In Open]DK there are four broad situations in which an object could be published: i) simple
changes to the object graph due to user code updating an instance field (putfield) or static field
(putstatic), ii) changes to the object graph due to the language-level implementation of arraycopy (),
iii) a reference from user native code through JNI, and iv) changes to internal runtime roots,
such as pointers to code objects. As mentioned before, each object has a public bit. The current
implementation of Iso in OpenJDK uses side metadata for the per-object public bit. Accessing the bit
requires bit arithmetic on the object’s address, yielding a bit number and byte address with which
the public bit can be tested or set. In principle we could use a bit in the object’s header, however
this is complicated by OpenJDK’s implementation of lock inflation which temporarily moves the
object’s header word to the stack, making the metadata location conditional on the object’s lock
state.> Augmenting our purely dynamic approach with static techniques [35] is something we may
explore in future work.

Putfield and Putstatic. Implementing the barrier in Listing 1 to capture user code changes through
putfield and putstatic operations is relatively straightforward. OpenJDK implements static fields
as fields of Class objects. As a consequence, its compilers ultimately don’t differentiate between
putfield and putstatic when injecting write barriers. Static objects are explicit roots (since they
are visible to all threads), so we just set the public bit on static objects at birth and allow the write
barrier to publish any private object referenced by them. During our testing, we found that in the

3This limitation was addressed by a recent change to OpenJDK 21 [37].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:10 Tianle Qiu and Stephen M. Blackburn

case of nested constructors, the C2 optimizing compiler, unaware of the semantics of our barrier,
would occasionally use code motion to lift the barrier above the code that initializes the target
object, leading to publish() (line 8) being applied to an uninitialized object, triggering a crash. Five
benchmarks (cassandra, h2, spring, springjc, and tomcat) are affected by this. Details in Section 5.2.

Arraycopy. A call to arraycopy() with reference array arguments should trigger the write barrier.
Rather than naively call the standard barrier in a loop, runtimes including OpenJDK typically
special-case arraycopy () since it is performed in bulk, and depending on the barrier semantics, may
be aggressively optimized. For this reason, OpenJDK has an arraycopy () barrier API. Unfortunately
the API does not expose the base addresses of the source and destination array fields, which we
need so that we can locate the public bits. We had to re-engineer this interface to expose the array
base addresses.

JNL References from native heaps are public. The Java Native Interface (JNI) introduces a level
of indirection between user-level native code and the Java heap. Updates to JNI fields are well
abstracted within OpenJDK so injecting the DLG barrier on JNI stores was straightforward.

Runtime Roots. Runtimes typically hold runtime-specific references into the heap that are not
exposed through user-level code or APIs. We observed two broad categories of such roots: i) strong
roots — these are enumerated by the runtime at garbage collection time, establishing the liveness
of (part of) the heap, and ii) weak roots — these are held silently by the runtime.

In the case of strong roots, the problem we faced was that although the runtime enumerates
them at collection time, it does not dynamically track creation or modification of all strong roots.
Since these runtime roots are shared and are thus public, the DLG invariant requires that Iso be
informed of the pending root creation before it occurs. We therefore had to exhaustively identify
all instances in the OpenJDK code base where strong root references are created, and ensure that
the referent objects are marked as public in order to maintain the invariant. Examples include
classloader references and code objects.

In the case of weak roots, the runtime is essentially silently caching object references. These
runtime-held references do not affect the liveness of the referent heap objects. There are two
considerations for weak roots that affect Iso. First, the runtime may allow other threads to discover
the referent objects through its cache. In that case, the referent object is public and must be marked
as such. Second, regardless of whether the runtime publishes the referent object, if Iso were to
move an object silently referenced by such a runtime cache, it would lead to a break in referential
integrity and a crash. Examples include string interning and constant pool caching, which both
serve to canonicalize common constant objects.

A surprising false-positive we discovered was that inflated locks may be private. We had rea-
soned that lock inflation implied a contended monitor, and thus publication, so we included an
assertion to ensure that lock inflation only occur with respect to public objects. We discovered that
the OpenJDK runtime will inflate uncontended locks during deoptimization,* and adjusted our
assertions accordingly.

4.2 Allocation and Heap Structure

Iso uses the same allocation strategy and heap structure as Immix [9]. Each thread has a bump
allocator which it uses to allocate into 32 KB blocks comprised of 128 X 256 B lines. The block
may have been completely empty initially, or it may be recycled. If the block is recycled, some
lines within the block will be marked, indicating that they contain live objects. The allocator will

4Deoptimization is the term used in HotSpot to describe the process of converting a more optimized stack frame into a less
optimized stack frame, which is needed to implement speculative optimization.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:11

move monotonically through the block advancing the bump pointer according to the size of the
allocation request, skipping over any marked lines. When a block is full, the thread requests a
new recycled block. If there are no recycled blocks available, the thread requests a clean block. Iso
deviates slightly from Immix because a thread can only consume recycled blocks that contain no
objects private to another thread. It does this by maintaining a thread-local list of recyclable private
and mixed blocks and a global list of recyclable public blocks. The thread will first use blocks in
the thread-local list before attempting to find a block from the global list. Using a public block for
thread-local allocation will turn the block into a mixed block. Following the Immix design, objects
may straddle lines but not blocks. Iso also follows Immix’s design of using a clean overflow block
for any allocation that is larger than a line in size. Iso uses MMTK’s large object space to allocate
objects larger than half a block (16 KB).

4.3 Thread-Local Collection

Iso performs thread-local collections using the owning application thread, not by delegating to a
separate garbage collection thread. It uses opportunistic copying, with a copy reserve of two clean
blocks made available to the collecting thread. Unlike a conventional global collection, the roots of
a thread-local collection are just the references from the thread’s stack. Global roots such as statics
and JNI roots are not relevant to a local collection since they are by definition public. The DLG
invariant ensures that any objects reachable from those global roots will have been published.

The collecting thread performs a transitive closure from its stack. Whenever it encounters a
public object, it treats the object as if marked. Whenever it encounters an unmarked private object
it will opportunistically copy it unless the copy reserve is exhausted. When an object is copied it
leaves behind a forwarding pointer, so that if the object is encountered again later in the trace,
the reference can be redirected to the new copy. At the end of the collection, the thread performs
a sweep of its local blocks. Blocks with no live objects are returned to MMTk’s block manager.
Blocks with live private objects are returned to the thread’s local recyclable block list, after zeroing
freed lines. Blocks that only contain live public objects are now public blocks and so are returned
to the global recyclable block list. Recall that local collections cannot move public objects since a
public object may be referenced from outside the scope of the collection.

Iso’s mixing of private and public objects within local heaps and its use of opportunistic copying
distinguish it from prior work, which either make local heaps a logical concept and move noth-
ing [20] or make local heaps spatially distinct and maintain an invariant that they may only contain
objects private to the owning thread [18, 19].°

Performing local collections within the application thread has two nice properties: i) it avoids
the overheads of synchronization between the application thread and a garbage collection thread,
and ii) it achieves mutual exclusion with global collection at zero cost. However, it requires careful
engineering. Before it can correctly scan its stack, the application thread must be at a GC safe point.
Issuing a safepoint yield request would cause the thread to yield correctly but would also yield
all other application threads, so is not tenable. Instead we use OpenJDK’s thread-local handshake
mechanism [21]. Once the thread-local collection starts, the thread will not return to a safe point
again until it completes the collection. As a side effect, a global collection will never conflict with
any thread-local collections since this mechanism delivers mutual exclusion.

4.4 Global Collection

Thread-local collections cannot collect public objects, so like other thread-local collectors, Iso uses
another collector with global scope to collect them. The current implementation of Iso falls back to

5This seems to explain why the terms local and private are often conflated in prior work.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:12 Tianle Qiu and Stephen M. Blackburn

Immix [9] for global collection, but in practice it could use another collector. The primary constraint
on the choice of global collector is that it be able to maintain the Block invariant introduced at the
start of Section 4 — that no block may contain objects private to more than one thread.

During global collections, Iso maintains the Block invariant straightforwardly — by only moving
public objects. Iso achieves this by opportunistically copying public objects and leaving private
objects in place. Private blocks are never selected as sources for defragmentation since they never
contain objects that are movable in global collections. A more aggressive Iso design might move
private objects. Such a design might yield better defragmentation at the cost of complexity and
overhead associated with establishing each private object’s owner, locating a suitable target block
for the copy, and synchronizing with other collector threads before writing into that block.

The restriction that global collections only move public objects limits opportunities for defrag-
mentation. Iso mitigates this by performing thread-local defragmentations at the start of global
collections. Threads with large thread-local heaps are targeted for thread-local traces, but unlike
local collections, the trace is performed by a garbage collection thread and both public and private
objects can be moved. Each local trace is performed strictly by a single thread, making maintaining
the Block invariant straightforward since only one thread’s private objects can be encountered
during the trace. Local defragmentations are followed immediately by the global trace, which moves
only public objects and uses forwarding pointers to restore referential integrity with respect to any
public object moved during the local traces.

4.5 GC Triggering

Threads trigger local collections at the end of requests if their local heap has reached a configurable
size threshold. We found that a trigger of 512 KB worked well among the DaCapo request-based
workloads. Each thread has a copy reserve of two clean blocks in which it may copy surviving
objects during thread-local collections. Note that the thread-local copy reserve does not impact
the total heap budget since it can be drawn from the copy reserve set aside for global collections,
since they are mutually exclusive. Iso triggers global collections when the heap budget is exhausted.
Each global collection has a configurable percentage of the heap held in reserve for copying, just as
Immix does. By default this is 5%.

5 Methodology
5.1 Hardware and Software Environment

Unless otherwise stated, we performed our experiments on AMD Ryzen 7950x machines with 16/32
cores running at 4.5 GHz with a 64 MB LLC, and 4800 MHz 64 GB DDR5 memory. To assess its
sensitivity to the hardware platform, we also evaluated Iso on a number of other x86-64 machines,
including an Intel Core 19-12900KF Alderlake with 8/16 performance cores and 8/8 efficiency cores
running at 3.2 GHz and 2.4 GHz respectively with 12 MB of LLC. We found that the results were
consistent across the various platforms we evaluated, so do not discuss the other platforms further.
All machines run an Ubuntu 22.04 image with a Linux 6.8.0-40 kernel.

5.2 Open)DK

We implemented Iso in the new MMTk [7] using its OpenJDK binding, which uses OpenJDK fork
jdk-11.0.19+1. We build Iso on top of Immix, which comes with MMTk. We build G1 from the same
OpenJDK fork. MMTk’s OpenJDK binding lacks support for certain runtime features including class
unloading, compressed pointers and weak reference processing. During evaluations, we disable
these features in G1 to ensure all three collectors are evaluated using the same runtime features.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:13

As mentioned in Section 4.1, we found that in certain circumstances involving the inlining of
nested constructors, OpenJDK’s C2 optimizing compiler, unaware of our barrier’s semantics, would
perform code motion that was unsound, leading to the publication process being applied to an
object that was not yet initialized, which would generate a crash. We found that we could work
around this on springjc by using a command line flag to avoid optimization of a specific class, but
for cassandra, spring, tomcat, and h2, we did not find a simple workaround and had to resort to
disabling the C2 compiler. In all four cases, we applied the same command line flags to all three
collectors we tested to ensure that they were evaluated using the same compiler configuration. To
quantify the impact of disabling C2 for these four workloads, we conducted an experiment where
we evaluated the impact of disabling C2 on the bottom line, using workloads that could use C2. We
found that the impact on the results was insignificant,® which gives us confidence in the results
we attained for the four benchmarks where C2 was not available. The other benchmarks were
unaffected.

5.3 Benchmarks

We use the Chopin-23.11-MR1-RC1 release of the DaCapo benchmark suite [6] and introduce a
new benchmark, springjc, which we describe below. All of these benchmarks implement request
begin and end callbacks which we use to provide Iso with a collection hint.

As we will show in Section 6.1, and as is evident in Table 1, a careful examination of the DaCapo
benchmarks reveals that none are ideal matches to our target workload of application services with
large number of quasi-independent requests. Among DaCapo’s eight request-based workloads, three
(h2, tradebeans, and tradesoap) do not issue isolated requests. Instead, all requests are dominated
by computation over a shared in-memory database. As a result, their publication rates are extremely
high (68%, 53%, and 43%). The cassandra workload also does not issue isolated requests, leading
to an overall publication rate of 33%. The kafka workload is problematic for two reasons. First, it
is implicitly singled threaded because of the way it dispatches queries. Second, its request begin
and request end callbacks are called from different threads, making attribution of work intractable.
The kafka workload is the subject of an open pull request which seems to address some of these
issues [57]. The majority of tomcat’s work is done in the client, which makes it uninteresting as a
server benchmark.

This leaves lusearch and spring, neither of which are ideal as representative of large scale appli-
cation servers. The lusearch workload is not implemented as a client-server benchmark; it directly
runs server queries. The spring workload has a very light server-side workload, querying a small
database that models a veterinary practice rather than performing any substantive computation.

Because of these shortcomings, we found it necessary to create our own workload, springjc.
It is a compilation server based on the spring benchmark. Instead of querying a tiny database
as DaCapo’s spring does, springjc uses the standard Java compiler, javac, to compile one of 172
small single-file Java source programs, chosen according to the request it receives. It thus exercises
the same Spring application framework, which is a modern, widely-used framework [50] and by
building upon spring, it benefits from the DaCapo harnessing infrastructure, but conducts a more
realistic and substantial workload. We will make our workload available.

®Concretely, for lusearch, Iso’s improvement over Immix went from 17.4% to 16.8%, while for springjc it went from 44.9% to
46.7%, indicating a 0.6% reduction for lusearch and a 1.8% improvement for springjc.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:14

Tianle Qiu and Stephen M. Blackburn

Table 1. Benchmark publication characteristics. The first two columns indicate each workloads’ total
allocation and allocation rate. The next two columns indicate the publication rate, expressed with respect to
bytes allocated and execution time. The fifth column indicates the overhead of adding the DLG-enforcing
write barrier. The first nine benchmarks (springjc — tradesoap) are request-based.

Allocation MB Publication MB DLG
Benchmark /sec /MB alloc /sec overhead
springjc 97324 6746 0.21 1398 1.02
cassandra 6700 953 0.33 315 1.10
h2 36793 11654 0.68 7872 3.47
kafka 4543 848 0.20 166 1.00
lusearch 27720 13131 0.01 116 1.08
spring 15588 4813 0.03 131 1.01
tomcat 6360 1736 0.10 168 1.02
tradebeans 1509 2606 0.53 1371 2.48
tradesoap 1229 2415 0.43 1049 1.57
avrora 195 66 0.06 4 1.00
batik 472 383 0.55 210 1.21
biojava 12098 2120 0.00 0 1.04
eclipse 8238 918 0.36 326 1.16
fop 519 811 0.09 75 1.06
graphchi 12297 5208 0.02 107 1.06
h2o 15280 4980 0.37 1858 1.07
jme 178 26 0.05 1 1.00
jython 5359 2324 0.37 848 1.61
luindex 2226 779 0.06 50 1.04
pmd 8464 7077 0.13 946 1.14
sunflow 22155 13575 0.00 0 1.02
xalan 6403 11684 0.20 2324 1.05
zxing 1671 2866 0.06 183 1.01

6 Evaluation

6.1 Overall Publication Behavior and DLG Barrier Overhead

Table 1 quantifies the allocation and publication behavior of springjc and each of the DaCapo
benchmarks. The first two columns indicate total allocation and the allocation rate. The next two

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:15

Table 2. Request processing publication characteristics. The first pair of columns indicate the requests’
allocation rate with respect to time and KB per request. The next pair of columns indicates the fraction of
requests that are server-side. The next pair indicates median and 90th-percentile of per-request publication
rate. The last pair indicates median and 90th-percentile of per-request private survival rate.

Allocation Server Publication Private Survival

MB/Sec KB/rq B/all Obj/all 50%-ile 90%-ile 50%-ile 90%-ile

springjc 6746 12166 1.00 1.00 0.17 0.17 0.00 0.00
cassandra 1339 32 0.50 0.53 0.26 0.40 0.00 0.00
h2 11658 377 - - 0.63 0.68 0.00 0.00
kafka 916 5 - - - - - -
lusearch 13128 54 1.00 1.00 0.00 0.02 0.19 0.19
spring 4812 1948 0.95 0.98 0.21 0.46 0.00 0.00
tomcat 1765 81 0.14 0.24 0.15 0.49 0.00 0.00
tradebeans 2632 85 - - 0.54 0.63 0.00 0.00
tradesoap 2442 285 - - 0.30 0.48 0.00 0.00

columns indicate publication rate in terms of bytes and time. The top nine benchmarks are request-
based. The table shows that some workloads, including lusearch (0.01) and spring (0.03) have very
low publication rates. Some of the non-request-based workloads also have very low publication rates,
including biojava, graphchi, and sunflow. Four of the request-based workloads have notably high
publication rates: h2, tradebeans, tradesoap, and cassandra (discussed in Section 5.3). Workloads
such as these are clearly not suitable targets for thread-local garbage collection.

The last column of Table 1 indicates the overhead of the DLG invariant-enforcing write barrier
(Listing 1). It measures the mutator overhead of our baseline Immix-based system without any
thread-local collection, when publication tracking is enabled relative to when it is not enabled. Note
the variability in this overhead. Many workloads, including important ones like spring, springjc, and
tomcat have overheads of 2% or less. Note that eight of the fourteen non-request-based workloads
have overheads of 7% or less and four of those have overheads of just 2% or less (avrora, jme, sunflow,
and zxing). We have focussed exclusively on large application servers with isolated requests, so
have yet to explore the applicability of Iso to such promising non-request-based workloads. On the
other hand, h2, tradebeans and tradesoap have extremely high overheads, clearly rendering the
approach non-viable for such workloads. Nonetheless, this result leads to a key finding of our work:
that it is possible to maintain the DLG invariant on large-scale Java workloads in a production
JVM at very low overhead for important server workloads such as lusearch (Lucene [27]), spring,
springjc (Spring [50]), and tomcat (Tomcat [28]).

6.2 Request Characterization

Table 2 characterizes the behavior of requests among springjc and DaCapo’s eight request-based
workloads, highlighting the three workloads that are dominated by isolated server-side requests
(springjc, lusearch, and spring). The first two columns indicate the allocation rate of the request

7Overheads are also low for kafka and cassandra but we exclude these benchmarks for reasons discussed in Section 5.3.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:16 Tianle Qiu and Stephen M. Blackburn

== GI B mmix B 5o
1.1 120 - 160
E
I — 2100 1 M
= £ 9
Bl ~ < 120
£ 09 +— a 80 <
£ - H S 100
£ 08 — S 60 % 80
et c)
£ 07 7 % m § 62
4
S
g 06 T— = R [.
o =N
I o5 0 ——y—‘:-— 0 -
% o Sy 2y, oy Sy %, Sy oy
SeQ’Cﬁ ’/ﬁg L ,”glb 5'@5%)$ 7 lﬁg ’/,,g/b Se&’c/, t /qg ’/bg/_b
(a) Total request processing time. (b) Median latency (ms). (c) 90th percentile latency (ms).

Fig. 2. Throughput and latency performance of Iso at 2.0x the minimum heap in which Immix will run.
The left graph shows the elapsed time for the request-processing portion of each benchmark, normalized to
our baseline, Immix. The right two graphs show the median and 90th percentile metered latencies in msec.
Iso’s latency performance ends up being dominated by its fall-back collector, Immix.

processing part of the workloads, first expressed in MB per second and then in KB per request.
Workloads with higher allocation rates are more likely to place stress on a garbage collector, so
lusearch, h2, springjc and spring are prime targets, however h2’s very high publication rate makes
it unsuitable for thread-local garbage collection. Note that the amount allocated per request varies
by more than three orders of magnitude among these benchmarks, from 5 KB (kafka) to 12.1 MB
(springjc). In our experience, some industrial web services readily allocate 10’s or 100’s of MB per
request. The next columns indicate what fraction of the request-time allocation occurs on the server
side (versus the client side). This varies greatly from no explicit server-side activity (h2, kafka,
tradebeans, tradesoap), to entirely server side (springjc, lusearch). Our work targets server-side
workloads, which makes springjc, lusearch, and spring most interesting.

The next pair of columns indicate the per-request publication rate, showing the median (50%-ile)
and 90%-ile rates among all of the issued requests. Among the interesting workloads, the rates
vary from lusearch’s extremely low 0-2% to spring’s relatively high 21-46%, while springjc is very
consistent with a moderate 17% for both median and 90th percentile. It is interesting to view
these publication rates alongside the private object survival rates, which are shown in the last two
columns. Notice that although spring and springjc have moderate to high publication rates, they
have zero survival rates for private objects. This indicates that the data which is not shared with
other threads is crisply bounded in lifetime to the life of the request. On the other hand, lusearch
has near-zero publication but a moderate survival rate, which suggests that thread isolation is very
strong, and results from requests are handled within the requesting thread, not shared with other
threads. Indeed, each lusearch thread directly writes its request results to file rather than handing
them off to another thread for processing.

The zero survival rate of private objects revealed in this analysis nicely confirms the hypothesis
underlying the motivation for this paper. It shows that the thread-private aspects of these large
modern Java workloads do in fact conform with the liveness properties depicted in Figure 1.

6.3 Performance Analysis

Figure 2 shows the throughput and latency performance of the three key workloads. We use Immix
as our baseline because the current implementation of Iso is built on Immix, and thus Iso should be

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:17

./ G1 I |mmix EE so

22

2.0 \

All Requests (time/best)
I

20 3.0 4.0 5.0 6.0
Heap Size / Min Heap

Fig. 3. Heap size sensitivity for G1, Immix and Iso on springjc. Iso is substantially more space-efficient
than G1 or Immix. As the heap size grows larger, Iso’s space advantage is diminished.

seen as an optimization over Immix. An implementation of Iso built on a more performant collector
such as LXR should perform better, accordingly. We also show results for G1 since it is the default
collector within OpenJDK and prior work shows that Open]DK’s alternatives either significantly
compromise latency or throughput [12]. This analysis is conducted in a modest heap, set to 2.0x
the minimum heap in which Immix will run.

Figure 2(a) shows the total time for the request-processing segment of each workload.® Iso
outperforms Immix substantially: by 17%, 10.5%, and 45% in total execution time. It even outperforms
G1 substantially on lusearch and springjc: by 22% and 33%. These results make it clear that for
workloads such as these, request-private garbage collection is not only viable, but has an impressive
advantage over existing approaches. Note that on lusearch, Iso has an 8% overhead due to its DLG
barrier (Table 1), but is able to overcome this to outperform the other collectors by 17% and 22%.
(The barrier overhead for spring and springjc was just 1% and 2% respectively.)

Figure 3 shows the three collectors’ sensitivity to heap size on springjc. Iso is substantially more
space efficient than both G1 and Immix, giving it a large performance advantage in modestly sized
heaps. As the heap size grows the performance advantage diminishes. Nonetheless, Iso significantly
outperforms Immix even at extremely generous heap sizes.

Despite outperforming Immix by 10.5% on spring (Figure 2(a)), Iso lags G1 by 3.4%. We determined
that this is due to Immix requiring nearly twice the minimum heap size of G1 on spring. This is an
example of Iso inheriting a performance characteristic from the specific collector implementation it
is built upon, something that would be addressed if Iso were built upon a more advanced collector.

Figure 2(b) and Figure 2(c) show the median and 90th percentile metered request latency. The
DaCapo benchmarks use metered latency to model a server’s request queue, whereby an interruption
due to the scheduler or a garbage collection not only affects the latency of the running request/s,
but also all those in the request queue [12]. Both figures show Iso substantially reducing latency
compared to both G1 and Immix, particularly on the more substantial springjc workload. Iso’s tail
latency would further improve if it used a fall-back collector that performed collections concurrently,
rather than simple stop-the-world, whole-heap collection performed by this version of Immix. LXR
and V8’s collector are examples of advanced low-latency mark-region collectors that could better
fill this role [15, 60].

8DaCapo separately captures the execution time for the dominant request-based portion of workloads, so that it can be
separated from any time the benchmark may take to start the server or perform other such one-time initialization work, etc.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:18 Tianle Qiu and Stephen M. Blackburn

E\ 3
£
E 25
)
£ 2
o
2 1.5
o
(]
=]
S 1
(=4
= 0.5 -
<
Cas, % 4ar s Sor;, o,) [y
52 (e e n, T e, %, %,
& Q e 3, 4, s,
@y (3 & & d ee% 03,
— G1 S |mmix e |so

Fig. 4. Request processing time for all DaCapo request-based benchmarks and springjc. The lack of
isolation and correspondingly high publication rates of h2, tradebeans, and tradesoap and thus their high
DLG barrier overhead (Table 1) make them unsuitable for thread-local collection; borne out by these results.

6.4 Other Request-Based Workloads

Figure 4 shows Iso’s performance across all nine request-based workloads, again normalized to
Immix, and including G1. The three workloads with very high publication rates; h2, tradebeans,
and tradesoap all show substantial slowdowns of 2.59%, 2.40%, and 1.59%. For h2, this slowdown is
substantially less than the 3.47X slowdown due to the barrier overhead (Table 1), while for the two
trade benchmarks, the overheads are about the same as the barrier overhead. Among the remaining
three workloads, the overheads are awash, with tomcat showing a 4% win, kafka neutral, and
cassandra showing a 6% slowdown.

This reinforces the point that request-based garbage collection is not a general purpose approach.
It depends on workloads that issue largely-isolated requests. Workloads that are mostly public, not
isolated, such as h2, tradebeans, and tradesoap cannot benefit much from local collections, and pay
a significant overhead for dynamic enforcement of the DLG invariant.

7 Discussion and Threats to Validity

Iso demonstrates that request-private garbage collection is not only practical but very effective
for suitable workloads. It also demonstrates that opportunistic copying solves the challenge of
efficiently implementing request-local garbage collection in the absence of exploitable immutability.
The implementation of Iso was a substantial engineering undertaking, and although it is built in a
production JVM and can run successfully with large applications and with a rich benchmark suite,
there are limitations to our implementation that are important to note.

Generality. While Iso is complete and should run any general-purpose Java workload correctly,
it is not designed to be a general purpose garbage collector. This approach is consistent with two
of the five production collectors that presently ship with OpenJDK: Shenandoah and ZGC. These
collectors specifically target low-latency application domains, but introduce throughput overheads
for general purpose programs similar to and higher than Iso’s. (Compare the overheads in Table 1
to those in Table VIII of Cai et al. [12].) Iso specifically targets multithreaded, performance-critical
application services that run large numbers of concurrent, largely isolated requests. Section 6.4
showed that workloads with unsuitable characteristics will perform very poorly, primarily due to
the cost of dynamically maintaining the DLG invariant on such workloads. It seems possible that
other techniques such as static analysis could greatly reduce overheads in such cases, but we leave
that exploration for future work. Iso’s design is not Java-specific. In principle it could be useful in
any language runtime used to serve large numbers of concurrent, largely-isolated requests.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

Iso: Request-Private Garbage Collection 182:19

Other Collectors. The Iso design is underpinned by a general purpose collector used to ensure
public objects are reclaimed efficiently. The initial implementation uses Immix [9], which is a stop-
the-world, full-heap collector, and its stop-the-world pauses will affect tail latency. A more advanced
implementation of Iso would fall back to a concurrent mark-region collector such as LXR [60] or
V8’s collector [15]. In our evaluation we compared with Immix, which we built upon, and G1, which
is the default OpenJDK performance collector. The LXR collector is a general purpose collector with
very good throughput and latency performance. We did not compare with LXR for two reasons.
First, LXR has not been merged into MMTk and is separately maintained. The differences between
its codebase and ours make comparison difficult. Second, the improvements made by LXR are
largely orthogonal to Iso. Ideally Iso would be retargeted to LXR, and the comparison between the
LXR-based Iso and LXR would be interesting. The relative simplicity of Immix made it the ideal
starting point for this first successful demonstration of request-private garbage collection.

Workloads. Iso is evaluated on three workloads, one which we constructed. The lack of strong
preexisting workloads is perhaps a reflection of the lack of existing thread-local collectors for Java.
We expect that the promise of this approach will lead to adoption and to other related work, and
with it more workloads. In some cases, modest extensions or modifications to existing workloads
may make them more realistic and more interesting [57]. Our exploration of the properties of
existing DaCapo workloads (Section 6.1, Section 6.2) invites further research on why publication
rates vary as much as they do (Table 1), and whether through different software engineering
patterns there may be relatively simple mitigations.

OpenJDK and Missing Features. We built Iso on MMTk and evaluate it with MMTk’s OpenJDK
binding. MMTk’s binding currently targets OpenJDK 11, so our evaluation only considers that
version. We don’t see any reason why moving to the most recent OpenJDK would affect our findings,
but of course cannot rule out that possibility. As we mentioned in Section 4.1 and Section 5.2, a
bug related to code motion affecting the correctness of the write barrier led us to disabling the C2
optimizing compiler on four benchmarks (cassandra, h2, spring, and tomcat). It is possible that the
results for these benchmarks will change once the bug is addressed. We speculate that the main result
will be better optimization of the write barrier, which would tend to improve Iso’s performance.
The MMTk OpenJDK binding is limited by lack of support for class unloading, compressed pointers
and weak reference processing. We see no reason to believe that the implementation of any of
these missing features will affect the Iso design or implementation, but it’s not easy to predict with
confidence exactly what impact the addition of any such feature will have.

Lightweight Threads. Many runtimes implement lightweight threads by scheduling them on
top of operating system-level threads. As an example, Virtual Threads were recently introduced
into the Java Platform [43], becoming available in OpenJDK 21. One of the motivations for Virtual
Threads was to make it practical to build thread-per-request services (presently application services
typically run requests sequentially within heavyweight threads). A distinct benefit of lightweight
threads is that when services are built on a thread-per-request basis, the identification of request
boundaries becomes trivial, obviating the need for a request-end callback (Section 3). The thread
scheduling mechanism has no impact on the high level algorithm or the concept of thread-local
collection. From the standpoint of Iso’s implementation, the principal implication is that virtual
thread switches will need to also change allocators, so as to maintain Iso’s block invariant (Section 4).
We have not yet implemented support for virtual threads in Iso.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

182:20 Tianle Qiu and Stephen M. Blackburn

8 Conclusion

We introduce Iso, the first request-private garbage collector for Java. Iso substantially improves the
overall performance of suitable large application services, by as much as 32% and 22% compared
to the established production garbage collector, G1. The key to Iso is request-private garbage
collection, which brings together the longstanding ideas of carefully timing garbage collection to
minimize graph traversal costs [38, 54] with thread-local garbage collection [18, 19]. To do this,
Iso had to solve the problem of efficient thread-local garbage collection in a language without
a type system that exposes immutability. The solution to this problem was to use opportunistic
copying, which allows objects to be left in place by the collector when necessary and moved when
opportune. Iso’s strong performance opens the door to request-private garbage collection and with
it, new avenues for memory management research.

Acknowledgments

We are particularly grateful for the inspiration, feedback, and encouragement we received through-
out this project from Zixian Cai, Kathryn McKinley, Eliot Moss, Kunal Sareen, and Wenyu Zhao.

References

[1] Alexander Aiken, Manuel Fahndrich, and Raph Levien. 1995. Better Static Memory Management: Improving Region-
Based Analysis of Higher-Order Languages. In Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), La Jolla, California, USA, June 18-21, 1995, David W. Wall (Ed.). ACM,
174-185. doi:10.1145/207110.207137

[2] Todd A. Anderson. 2010. Optimizations in a private nursery-based garbage collector. In Proceedings of the 9th
International Symposium on Memory Management, ISMM 2010, Toronto, Ontario, Canada, June 5-6, 2010, Jan Vitek and
Doug Lea (Eds.). ACM, 21-30. doi:10.1145/1806651.1806655

[3] Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Programming with Effects. Proc. ACM
Program. Lang. 7, PLDI (2023), 1558-1583. doi:10.1145/3591284

[4] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John H. Reppy. 2011. Garbage collection for multicore NUMA
machines. In Proceedings of the 2011 ACM SIGPLAN workshop on Memory Systems Performance and Correctness: held in
conjunction with PLDI ’11, San Jose, CA, USA, June 5, 2011, Jeffrey S. Vetter, Madanlal Musuvathi, and Xipeng Shen
(Eds.). ACM, 51-57. doi:10.1145/1988915.1988929

[5] Godmar Back, Wilson C. Hsieh, and Jay Lepreau. 2000. Processes in KaffeOS: Isolation, Resource Management,

and Sharing in Java. In 4th Symposium on Operating System Design and Implementation (OSDI 2000), San Diego,

California, USA, October 23-25, 2000, Michael B. Jones and M. Frans Kaashoek (Eds.). USENIX Association, 333-346.

http://dl.acm.org/citation.cfm?id=1251252

Stephen M. Blackburn, Zixian Cai, Rui Chen, Xi Yang, John Zhang, and John N. Zigman. 2025. Rethinking Java

Performance Analysis. In Proceedings of the 30th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 1, ASPLOS 2025, Rotterdam, The Netherlands, 30 March 2025 - 3 April 2025,

Lieven Eeckhout, Georgios Smaragdakis, Kaitai Liang, Adrian Sampson, Martha A. Kim, and Christopher J. Rossbach

(Eds.). ACM, 940-954. doi:10.1145/3669940.3707217

[7] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and Water? High Performance Garbage

Collection in Java with MMTk. In 26th International Conference on Software Engineering (ICSE 2004), 23-28 May 2004,

Edinburgh, United Kingdom, Anthony Finkelstein, Jacky Estublier, and David S. Rosenblum (Eds.). IEEE Computer

Society, 137-146. doi:10.1109/ICSE.2004.1317436

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer

Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok

Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2007. TR-CS-07-01: The DaCapo benchmarks: Java benchmarking development and analysis (Extended

Version).

Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: a mark-region garbage collector with space efficiency, fast

collection, and mutator performance. In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language

Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM,

22-32. doi:10.1145/1375581.1375586

—_
k=
—

—
[o)
[t

—
O
—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

https://doi.org/10.1145/207110.207137
https://doi.org/10.1145/1806651.1806655
https://doi.org/10.1145/3591284
https://doi.org/10.1145/1988915.1988929
http://dl.acm.org/citation.cfm?id=1251252
https://doi.org/10.1145/3669940.3707217
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1145/1375581.1375586

Iso: Request-Private Garbage Collection 182:21

[10]

(11

—

[12]

[13]

[14]
(15

=

(16

—

[17]

[18

—

[19

—

[20]

[21
[22
[23

—_

[24]
[25]

[26]

[27
[28
[29]

—

[30]

[31]

Hans-Juergen Boehm and Mark D. Weiser. 1988. Garbage Collection in an Uncooperative Environment. Softw. Pract.
Exp. 18, 9 (1988), 807-820. doi:10.1002/SPE.4380180902

Greg Bollella, Ben Brosgol, Peter Dibble, Steve Furr, James Gosling, David Hardin, and Mark Turnbull. 2000. The
Real-Time Specification for Java. Addison-Wesley.

Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas. 2022. Distilling the Real Cost of Production
Garbage Collectors. In International IEEE Symposium on Performance Analysis of Systems and Software, ISPASS 2022,
Singapore, May 22-24, 2022. IEEE, 46-57. doi:10.1109/ISPASS55109.2022.00005

Maurizio Cimadamore. 2023. JEP 442: Foreign Function & Memory API (Third Preview). https://openjdk.java.net/jeps/
442

CloudFlare. 2024. How Workers works. https://developers.cloudflare.com/workers/reference/how-workers-works/
Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross Mcllroy, and Hannes Payer. 2016. Idle time garbage collection
scheduling. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 570-583.
doi:10.1145/2908080.2908106

David Detlefs, Christine H. Flood, Steve Heller, and Tony Printezis. 2004. Garbage-first garbage collection. In Proceedings
of the 4th International Symposium on Memory Management, ISMM 2004, Vancouver, BC, Canada, October 24-25, 2004,
David F. Bacon and Amer Diwan (Eds.). ACM, 37-48. do0i:10.1145/1029873.1029879

Stephen Dolan, Leo White, and Anil Madhavapeddy. 2014. Multicore OCaml. In OCaml 2014: The OCaml Users and
Developers Workshop. https://anil.recoil.org/papers/2014-oud-multicore.pdf

Damien Doligez and Georges Gonthier. 1994. Portable, Unobtrusive Garbage Collection for Multiprocessor Systems.
In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, USA, January 17-21, 1994, Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin (Eds.). ACM
Press, 70-83. doi:10.1145/174675.174673

Damien Doligez and Xavier Leroy. 1993. A Concurrent, Generational Garbage Collector for a Multithreaded Imple-
mentation of ML. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993, Mary S. Van Deusen and Bernard Lang (Eds.).
ACM Press, 113-123. doi:10.1145/158511.158611

Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Sheinwald. 2002. Thread-local
heaps for Java. In Proceedings of The Workshop on Memory Systems Performance (MSP 2002), June 16, 2002 and The
International Symposium on Memory Management (ISMM 2002), June 20-21, 2002, Berlin, Germany, Hans-Juergen Boehm
and David Detlefs (Eds.). ACM, 183-194. doi:10.1145/512429.512439

Robbin Ehn. 2017. JEP 312: Thread-Local Handshakes. https://openjdk.org/jeps/312

Per Lidén et al. 2018. ZGC: The Z Garbage Collector. https://wiki.openjdk.java.net/display/zgc/Main

Yi Feng and Emery D. Berger. 2005. A locality-improving dynamic memory allocator. In Proceedings of the 2005
workshop on Memory System Performance, Chicago, Illinois, USA, June 12, 2005, Brad Calder and Benjamin G. Zorn
(Eds.). ACM, 68-77. doi:10.1145/1111583.1111594

Robert Fenichel and Jerome C. Yochelson. 1969. A LISP garbage-collector for virtual-memory computer systems.
Commun. ACM 12, 11 (1969), 611-612. doi:10.1145/363269.363280

A. Yu. Filatov and V. V. Mikheev. 2019. Quantitative Evaluation of Thread-Local Garbage Collection Efficiency for Java.
Program. Comput. Softw. 45, 1 (2019), 1-11. doi:10.1134/S0361768819010043

Christine H. Flood, Roman Kennke, Andrew E. Dinn, Andrew Haley, and Roland Westrelin. 2016. Shenandoah: An open-
source concurrent compacting garbage collector for Open]DK. In Proceedings of the 13th International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, Lugano, Switzerland,
August 29 - September 2, 2016, Walter Binder and Petr Tuma (Eds.). ACM, 13:1-13:9. do0i:10.1145/2972206.2972210
The Apache Software Foundation. 2024. Apache Lucene. https://lucene.apache.org/

The Apache Software Foundation. 2024. Apache Tomcat. https://tomcat.apache.org/

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-
Based Memory Management in Cyclone. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM,
282-293. doi:10.1145/512529.512563

Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and Matthew Fluet. 2018. Hierarchical memory
management for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2018, Vienna, Austria, February 24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.).
ACM, 81-93. doi:10.1145/3178487.3178494

David R. Hanson. 1990. Fast Allocation and Deallocation of Memory Based on Object Lifetimes. Softw. Pract. Exp. 20, 1
(1990), 5-12. doi:10.1002/SPE.4380200104

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

https://doi.org/10.1002/SPE.4380180902
https://doi.org/10.1109/ISPASS55109.2022.00005
https://openjdk.java.net/jeps/442
https://openjdk.java.net/jeps/442
https://developers.cloudflare.com/workers/reference/how-workers-works/
https://doi.org/10.1145/2908080.2908106
https://doi.org/10.1145/1029873.1029879
https://anil.recoil.org/papers/2014-oud-multicore.pdf
https://doi.org/10.1145/174675.174673
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/512429.512439
https://openjdk.org/jeps/312
https://wiki.openjdk.java.net/display/zgc/Main
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/363269.363280
https://doi.org/10.1134/S0361768819010043
https://doi.org/10.1145/2972206.2972210
https://lucene.apache.org/
https://tomcat.apache.org/
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3178487.3178494
https://doi.org/10.1002/SPE.4380200104

182:22 Tianle Qiu and Stephen M. Blackburn

[32]

[33
[34

[lan e}

[35]

[36]
[37]
[38]

[39]

[40]

[41
[42

—

[43]
[44
[45]

—

[46]

[47]

[48]

[49]
[50]
[51]
[52]

[53]

[54]

[55]

Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss, Zhenlin Wang, and Perry Cheng.
2004. The garbage collection advantage: improving program locality. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2004, October 24-28, 2004,
Vancouver, BC, Canada, John M. Vlissides and Douglas C. Schmidt (Eds.). ACM, 69-80. doi:10.1145/1028976.1028983
Richard Hudson and Austin Clements. 2016. Request Oriented Collector (ROC) Algorithm. https://golang.org/s/gctoc
Ivan Jibaja, Stephen M. Blackburn, Mohammad R. Haghighat, and Kathryn S. McKinley. 2011. Deferred gratification:
engineering for high performance garbage collection from the get go. In Proceedings of the 2011 ACM SIGPLAN workshop
on Memory Systems Performance and Correctness: held in conjunction with PLDI 11, San Jose, CA, USA, June 5, 2011,
Jeffrey S. Vetter, Madanlal Musuvathi, and Xipeng Shen (Eds.). ACM, 58-65. doi:10.1145/1988915.1988930

Richard E. Jones and Andy C. King. 2005. A Fast Analysis for Thread-Local Garbage Collection with Dynamic Class
Loading. In 5th IEEE International Workshop on Source Code Analysis and Manipulation (SCAM 2005), 30 September - 1
October 2005, Budapest, Hungary. IEEE Computer Society, 129-138. do0i:10.1109/SCAM.2005.1

Roman Kennke. 2021. Shenandoah in OpenJDK 17: Sub-millisecond GC pauses. Blog post. https://developers.redhat.
com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond- gc-pauses#

Roman Kennke. 2022. JDK-8291555: Implement alternative fast-locking scheme. https://bugs.openjdk.org/browse/JDK-
8291555

Henry Lieberman and Carl Hewitt. 1983. A Real-Time Garbage Collector Based on the Lifetimes of Objects. Commun.
ACM 26, 6 (1983), 419-429. doi:10.1145/358141.358147

Simon Marlow and Simon L. Peyton Jones. 2011. Multicore garbage collection with local heaps. In Proceedings of the
10th International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011, Hans-Juergen
Boehm and David F. Bacon (Eds.). ACM, 21-32. doi:10.1145/1993478.1993482

John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part L.
Commun. ACM 3, 4 (1960), 184-195. doi:10.1145/367177.367199

Krzysztof Palacz. 2001. JSR 121: Application Isolation API Specification. https://jcp.org/en/jsr/detail?id=121
Krzysztof Palacz, Jan Vitek, Grzegorz Czajkowski, and Laurent Daynés. 2002. Incommunicado: efficient communication
for isolates. In Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002, Mamdouh Ibrahim and Satoshi Matsuoka
(Eds.). ACM, 262-274. doi:10.1145/582419.582444

Ron Pressler and Alan Bateman. 2023. JEP 444: Virtual Threads. https://openjdk.org/jeps/444

Douglas T. Ross. 1967. The AED free storage package. Commun. ACM 10, 8 (1967), 481-492. doi:10.1145/363534.363546
K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul
Dhiman, and Anil Madhavapeddy. 2020. Retrofitting parallelism onto OCaml. Proc. ACM Program. Lang. 4, ICFP (2020),
113:1-113:30. d0i:10.1145/3408995

Bjarne Steensgaard. 2000. Thread-Specific Heaps for Multi-Threaded Programs. In ISMM 2000, International Symposium
on Memory Management, Minneapolis, Minnesota, USA, October 15-16, 2000 (in conjunction with OOPSLA 2000), Conference
Proceedings, Craig Chambers and Antony L. Hosking (Eds.). ACM, 18-24. doi:10.1145/362422.362432

Peter Styger. 1967. LISP 2 garbage collector specifications. Technical Report TM-3417/500/00. System Development
Cooperation, Santa Monica. https://www.softwarepreservation.org/projects/LISP/lisp2/TM-3417_500_00_LISP2_GC_
Spec.pdf

Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: the continuously concurrent compacting collector. In Proceedings
of the 10th International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011,
Hans-Juergen Boehm and David F. Bacon (Eds.). ACM, 79-88. doi:10.1145/1993478.1993491

V8. 2024. V8 Isolate Class Reference. https://v8docs.nodesource.com/node-0.8/d5/dda/classv8 1 1_isolate.html
VMWare. 2024. Spring. https://spring.io/

Sam Westrick. 2022. Efficient and Scalable Parallel Functional Programming Through Disentanglement. Ph. D. Dissertation.
Carnegie Mellon University.

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement detection with near-zero cost. Proc. ACM Program.
Lang. 6, ICFP (2022), 679-710. doi:10.1145/3547646

Paul R. Wilson. 1988. Opportunistic garbage collection. ACM SIGPLAN Notices 23, 12 (1988), 98-102. doi:10.1145/
57669.57679

Paul R. Wilson and Thomas G. Moher. 1989. Design of the Opportunistic Garbage Collector. In Conference on Object-
Oriented Programming: Systems, Languages, and Applications, OOPSLA 1989, New Orleans, Louisiana, USA, October 1-6,
1989, Proceedings, George Bosworth (Ed.). ACM, 23-35. doi:10.1145/74877.74882

Christian Wimmer. 2019. Isolates and Compressed References: More Flexible and Efficient Memory Management via
GraalVM. https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-
management-for-graalvm-a044cc50b67e

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

https://doi.org/10.1145/1028976.1028983
https://golang.org/s/gctoc
https://doi.org/10.1145/1988915.1988930
https://doi.org/10.1109/SCAM.2005.1
https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses#
https://developers.redhat.com/articles/2021/09/16/shenandoah-openjdk-17-sub-millisecond-gc-pauses#
https://bugs.openjdk.org/browse/JDK-8291555
https://bugs.openjdk.org/browse/JDK-8291555
https://doi.org/10.1145/358141.358147
https://doi.org/10.1145/1993478.1993482
https://doi.org/10.1145/367177.367199
https://jcp.org/en/jsr/detail?id=121
https://doi.org/10.1145/582419.582444
https://openjdk.org/jeps/444
https://doi.org/10.1145/363534.363546
https://doi.org/10.1145/3408995
https://doi.org/10.1145/362422.362432
https://www.softwarepreservation.org/projects/LISP/lisp2/TM-3417_500_00_LISP2_GC_Spec.pdf
https://www.softwarepreservation.org/projects/LISP/lisp2/TM-3417_500_00_LISP2_GC_Spec.pdf
https://doi.org/10.1145/1993478.1993491
https://v8docs.nodesource.com/node-0.8/d5/dda/classv8_1_1_isolate.html
https://spring.io/
https://doi.org/10.1145/3547646
https://doi.org/10.1145/57669.57679
https://doi.org/10.1145/57669.57679
https://doi.org/10.1145/74877.74882
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e

Iso: Request-Private Garbage Collection 182:23

[56]

[57]

[58]

[59]

[60]

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wogerer, Peter B. Kessler, Oleg Pliss, and Thomas
Wiirthinger. 2019. Initialize once, start fast: application initialization at build time. Proc. ACM Program. Lang. 3,
OOPSLA (2019), 184:1-184:29. doi:10.1145/3360610

Xi Yang. 2024. Add multi-producer and inflight request control for the Kafka benchmark. https://github.com/
dacapobench/dacapobench/pull/268

Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosking. 2012. Barriers reconsidered, friendlier still!.
In International Symposium on Memory Management, ISMM ’12, Beijing, China, June 15-16, 2012, Martin T. Vechev and
Kathryn S. McKinley (Eds.). ACM, 37-48. doi:10.1145/2258996.2259004

Wenyu Zhao and Stephen M. Blackburn. 2020. Deconstructing the garbage-first collector. In VEE °20: 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, virtual event [Lausanne, Switzerland)],
March 17, 2020, Santosh Nagarakatte, Andrew Baumann, and Baris Kasikci (Eds.). ACM, 15-29. doi:10.1145/3381052.
3381320

Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. 2022. Low-latency, high-throughput garbage collection.
In PLDI °22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 76-91. doi:10.1145/3519939.3523440

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 182. Publication date: June 2025.

https://doi.org/10.1145/3360610
https://github.com/dacapobench/dacapobench/pull/268
https://github.com/dacapobench/dacapobench/pull/268
https://doi.org/10.1145/2258996.2259004
https://doi.org/10.1145/3381052.3381320
https://doi.org/10.1145/3381052.3381320
https://doi.org/10.1145/3519939.3523440

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Arenas, Regions, and Request-Based Workloads
	2.2 Thread-Local Garbage Collection
	2.3 Mark-Region Heaps and Opportunistic Copying
	2.4 Isolates
	2.5 Other Collector Designs

	3 Request-Private Garbage Collection
	4 Iso's Design
	4.1 Maintaining the DLG Invariant
	4.2 Allocation and Heap Structure
	4.3 Thread-Local Collection
	4.4 Global Collection
	4.5 GC Triggering

	5 Methodology
	5.1 Hardware and Software Environment
	5.2 OpenJDK
	5.3 Benchmarks

	6 Evaluation
	6.1 Overall Publication Behavior and DLG Barrier Overhead
	6.2 Request Characterization
	6.3 Performance Analysis
	6.4 Other Request-Based Workloads

	7 Discussion and Threats to Validity
	8 Conclusion
	Acknowledgments
	References

